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Abstract

Distance transforms and the saliency maps they in-
duce are widely used in image processing, computer
vision, and pattern recognition. The minimum bar-
rier distance (MBD) has proved to provide accurate
results in this context. Recently, Géraud et al. have
presented a fast-to-compute alternative definition of
this distance, called the Dahu pseudo-distance. This
distance is efficient, powerful, and have many im-
portant applications. However, it is restricted to
grayscale images. In this article we revisit this
pseudo-distance. First, we offer an extension to mul-
tivariate image. We call this extension the vectorial
Dahu pseudo-distance. We provide an efficient way
to compute it. This new version is not only able to
deal with color images but also multi-spectral and
multi-modal ones. Besides, through our benchmarks,
we demonstrate how robust and competitive the vec-
torial Dahu pseudo-distance is, compared to other
MB-based distances. This shows that this distance is
promising for salient object detection, shortest path
finding, and object segmentation. Secondly, we com-
bine the Dahu pseudo-distance with the geodesic dis-
tance to take into account spatial information from
the image. This combination of distances provides
efficient results in many applications such as segmen-
tation of thin elements or path finding in images.

1 Introduction

Over the past decades, distance transforms have been
widely used in computer vision, image processing,
and pattern recognition (see [43, 12, 46, 39, 20]).
In general, distances can be classified into two cat-
egories: point-wise and path-wise. Point-wise dis-
tances are computed relatively to the domain of an
image, while path-wise distances take into account
the topographical view of the image. In this paper,
we focus on path-wise distances, where images can
also be seen as graphs (the vertices are the pixels of
the image). The usual method to find the path-wise
distance between two pixels is to compute the length
of the shortest path in the graph that goes from one
of these pixels to the other. The most used path-wise
distance in image processing is the geodesic distance
(see [38]). More recently, a pseudo-distance, called
minimum barrier distance (MBD) has been proposed
in [36].

The barrier “strengths” of a path is the difference
between the altitude of the highest point of the path
and the altitude of the lowest point of this path. The
minimum barrier distance between two points is the
smallest barrier “strengths” among the set of all pos-
sible paths between these two points. This distance
is studied in [12] and in [37]. The MBD has many
interesting theoretical properties and is an effective
tool in image processing and computer vision appli-
cations, especially to proceed to salient object detec-
tion (see [46, 39, 41, 42, 45, 20]), interactive segmen-
tation (see [16, 28]) and object localization (see [2]).
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Litterature shows that the minimum barrier distance
outperforms the geodesic one on noisy and blurred
images (see [36, 46]).

The MBD is powerful, but its computation expen-
sive. Several approximations of this distance have
then been proposed in [46], in [39] and in [20].

Recently, the Dahu pseudo-distance has been intro-
duced from the point of view of Mathematical Mor-
phology (see [15]) in order to approximate the MBD.
This Dahu pseudo-distance is computed by consider-
ing an image as a landscape (we also speak about its
topographical view). Unlike the approach of [46] and
of [20] which computes the MBD directly in the im-
age space, the Dahu pseudo-distance can efficiently
be computed on a tree-based representation of the
image; the tree of shapes of [14]. Thanks to this ap-
proach, the computation of the Dahu pseudo-distance
is very fast. However, this distance was initially de-
veloped for gray-level images and does not handle
color images very well. Therefore, we take here into
account the color information to improve it.

The main contributions of our paper are the fol-
lowing.

• We provide a method to efficiently compute the
Dahu saliency map while constructing the tree
of shapes.

• We offer an extension of the Dahu pseudo-
distance to multivariate images and we explain
how to compute it fast. We call it vectorial Dahu
pseudo-distance.

• We extend the Dahu pseudo-distance to a
more “clever” version which combines the Dahu
pseudo-distance computed on the tree and the
geodesic distance computed in the image to re-
fine results (especially to find the shortest path
between two points in the image space).

To demonstrate the robustness of the Dahu pseudo-
distance, we analyze it in several experiments and
applications as follows.

• We explore the properties of the Dahu pseudo-
distance: we compare our vectorial Dahu

pseudo-distance with the Dahu pseudo-distance
computed on separate channels, we analyze the
noise stability and the contrast of the vectorial
Dahu pseudo-distance.

• We demonstrate the robustness of the vectorial
Dahu pseudo-distance in some applications such
as salient object detection and shortest path
finding by comparing it with other MB-based
distances; especially for color images.

• We illustrate the usability of our vectorial Dahu
pseudo-distance on multi-spectral images by suc-
cessfully segmenting objects in satellite multi-
spectral images.

• We also demonstrate the usability of our vecto-
rial Dahu pseudo-distance on multi-modal im-
ages by segmenting white matter regions in the
brain on multi-modal medical images.

The paper is organized as follows. Section 2 con-
tains the state-of-the-art related to the MB-based dis-
tance. The Dahu pseudo-distance and the way to
compute the saliency map are presented in Section 3.
In Section 4, we present an efficient way to compute
it. Then we provide an extension to multivariate im-
ages. Additionally, the Dahu pseudo-distance is im-
proved and a more “clever” version is provided, using
at the same time the spatial and hierarchical infor-
mation of the image. In Section 5, we investigate the
properties of the vectorial Dahu pseudo-distance and
we compare it with state-of-the-art results. Some ap-
plications are presented in Section 6 to demonstrate
the efficiency of our distance. The conclusions and
perspectives are discussed in Section 7.

2 State-of-the-art

The MBD was originally introduced by [36] as a min-
imum value of the barrier strength among the set of
possible paths between two pixels in an image. The
MBD has been used in several applications in im-
age processing and computer vision, for instance, in
salient object detection (see [46, 39, 45, 41, 42, 20]),
in object localization (see [2]), in superpixel seg-
mentation (see [19]), in interactive segmentation
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(see [23, 12, 16, 28]), refocusing (see [27]), object pro-
posals generation (see [21]) and in object segmenta-
tion (see [47, 44]).

In salient object detection, the goal is to compute a
saliency map that highlights the most important ob-
jects in an image. To proceed, the boundary connec-
tivity prior, which is presented in [43], assumes that
background regions are usually large, homogeneous,
and that the image boundary is mostly background.
The MBD estimates a distance from every pixel in
the image to the image boundary while considering
that image boundary is regarded as the background
seeds (see [46, 39, 45, 41, 42, 20]).

Many applications take advantage of the relevance
of the saliency map computed by the MBD. The clas-
sical usage of this saliency map is object segmenta-
tion. For example, in [47], an object segmentation
method is proposed by using an affinity model based
on the MBD. Object segmentation is also a starting
point for multiple other applications. For example,
in [2], a tracking method based on the MBD is pre-
sented. Another example, exposed in [27], relies on
object segmentation to perform a refocusing. Addi-
tionally, the relevance of the saliency map computed
by the MBD has also been used in object proposal
generation as presented in [21]. This method aims
to generate a certain amount of candidate bounding
boxes to provide potential object locations for further
tasks such as object detection and segmentation.

Besides, the MBD has also been used for interac-
tive segmentation (see [23, 36]). In this application,
the user tags a small set F of pixels belonging to the
object to set it as foreground and a small set B of
pixels outside of the object to set it as background.
Interactive segmentation is the binary classification
of the object with respect to F and B. Each pixel in
the image is classified as foreground or background
by comparing the MBD between the pixel itself and
the two sets of seeds F and B. In [36], the MBD
is computed on grayscale images, and its extended
color version is presented in [23]. These articles show
that this process is robust to noise, blurring and seed
point position.

Another application is the computation of super-
pixels (see in [19]). The authors propose a method
for superpixel segmentation relying on the MBD. Su-
perpixels are determined around them according to
“compact-aware MBD”, which is a combination of
the original MBD and the (spatial) Euclidean dis-
tance.

The MBD is very powerful, but difficult to com-
pute efficiently on images of reasonable size. Because
computing the exact MBD usually takes too long,
approximate but faster methods have been proposed
(see [46, 39, 20]).

In [46], the authors presented an approximation
(Fast-MBD) with a raster scan algorithm to update
the MBD thanks to its neighbors. This salient ob-
ject detection method runs at about 80 FPS and
achieves competitive performance with state-of-the-
art saliency detection methods. Despite the fact that
it provides good results, the raster scan method has
difficulties when the exact path between two pixels
is in a direction between the bottom left and the top
right of the image (see [20] for details).

[39] have developed another approximation of the
MBD. In their approximation, the input image is
represented by its minimum spanning tree (MST).
Paths between pixels correspond to paths between
the nodes of the tree. The MST highly reduces the
size of the space we look for to find the shortest path
between two pixels of the image. However, the “sim-
ple” structure property of MST can lead to some ap-
proximation errors, especially when noise appears in
the image.

Recently, a new algorithm to approximate the
MBD has been presented in [20], which is inspired
from the natural phenomena of water flow. The seed
pixels which are usually put on the boundary of the
image, are assumed to be sources of water. Then, the
water spreads from the sources to the neighboring
pixels (with different flow MBD) until all the pix-
els are flooded. The Waterflow-MBD computation
achieves a high-speed performance and shows com-
parable results with other methods.

These methods based on the MBD achieve state-
of-the-art results with other bottom-up methods on
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saliency map computation. They can also process
an image in real-time, which is relevant for applica-
tions with speed requirements. On the other hand,
they also suffer from a number of limitations. In par-
ticular, color images (or more generally multivariate
images) are not handled very well (or not handled at
all). A multivariate version of the MBD needs to keep
the advantages of the MBD and has to be efficient as
well. For this reason, we propose a new version of
the MBD based on the Dahu pseudo-distance. The
proposed method in this paper computes distances
taking into account multivariate data which can be
made of different color images as well as multimodal
or multispectral images. We also demonstrate the
robustness of the Dahu pseudo-distance in several
applications such as salient object detection, short-
est path finding and interactive segmentation. The
Dahu pseudo-distance, which inherits the properties
from the Tree of Shapes (ToS) (see [10]), has been
shown to be robust to noise and blur effects in the
image, and it gives competitive results compared to
state-of-the-art methods.

3 The Dahu pseudo-distance

In this section, we give the mathematical background
necessary to define the MBD in details and we show
how to derive a distance map using the MBD, before
addressing a new discrete version of the minimum
barrier distance, called the Dahu pseudo-distance and
an efficient way to compute it.

3.1 The Minimum Barrier Distance

In image processing applications, an image domain
is associated with a graph in which vertices repre-
sent discrete pixels on the image and edges repre-
sent connections between pixels. A gray-level im-
age (Fig. 1(a)) is then represented as a vertex-valued
graph (Fig. 1(b)).

A path in a graph X is a sequence π =
〈..., pi, pi+1...〉 , with pi ∈ X and pi+1 ∈ NX(pi),
where NX is the adjacency relations between pixels.
Also, the set of paths going from the vertex x to the
vertex x′ is denoted by Π(x, x′). The barrier strength
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Figure 1: Image representations used to compute bar-
rier distances (see [15]).

(also called barrier distance or cost) τ of a path π in
the given gray-level image u is defined as:

τu(π) = max
pi∈π

u(pi) − min
pi∈π

u(pi). (1)

The barrier strength of a path is the difference be-
tween the highest and lowest pixel values along this
path. The minimum barrier distance d MB between
two vertices x and x′ in u is then defined as the mini-
mum of the barrier strengths of all the paths between
two given vertices:

d MB

u (x, x′) = min
π∈Π(x, x′)

τu(π), (2)

In Fig. 1(b), the blue path, which corresponds to
a sequence 〈1, 0, 0, 0, 2〉, is considered as the shortest
path between these two red vertices. The correspond-
ing MBD is then equal to 2.

Note that, despite its name, the MBD is not a dis-
tance, because it can exist some x, y such that x 6= y
and d MB

u (x, y) = 0.
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3.2 Distance map based on the MBD

It is common to derive a distance map from the MBD.
Given a minimum barrier strength function and a
set X ′ of seed points, a distance map S MBD can be
computed by:

S MBD

u (x, X ′) = min
x′∈X′

d MB

u (x, x′). (3)

A distance map is then the MBD from every point
of the image to the set X ′ of seed points. For ev-
ery point, the MBD looks for the smallest distance
between x and any pixel x′ that belongs to X ′.

The next section presents a variant of the MBD,
which is also based on the notion of barrier (Eq. (1)).

3.3 The Dahu pseudo-distance

A new discrete version of the MBD, named the Dahu
pseudo-distance, has been defined in [15]. It consid-
ers an image (see Fig. 1(a)) as a continuous surface
in the set-valued sense (see Fig. 1(d)) on a discrete
topological domain called the Khalimsky grid. De-
tails about set-valued continuity and about Khalim-
sky grids can be found in [24] and in [1] respectively.
The optimal blue path between the two red points is
depicted in the image, and has a distance equal to 1.
It is slightly different from the original MBD. Let us
briefly present this Dahu pseudo-distance.

A gray-level image can be seen as a function u:
Z2 → N. When we represent an image using a sur-
face, we cannot use scalar functions; we have to use
set-valued functions. More exactly, in [15], the au-
thors proposed to replace the domain Z2 by the topo-
logical discrete space H2 of the 2D Khalimsky grid
(also known as 2D cubical complex ), and the value
domain N is replaced with the set IN of intervals of
natural numbers. The 2D cubical complex, which is
illustrated in Fig. 1(e) is a set of 2D, 1D, and 0D
elements. The 2D elements are the original pixels
represented by the big squares in Fig. 1(e). The 1D
elements are the rectangles (see Fig. 1(e)) located
between the big squares. They are valued by the in-
terval whose minimum and maximum are computed
from the two big squares near to it. For example, if
the two nearby squares are set at {1} and {4}, the

in-between 1D element will be set at [1, 4], and all the
level lines between 1 and 4 will cross this 1D element.
The 0D elements are the little squares (see Fig. 1(e))
surrounded by 4 squares; they are set at the span
value computed from the values of these 4 squares.

Note that the 1D yellow element in Fig. 1(e) which
is bounded by a purple border corresponds to the
vertical purple part in Fig. 1(c). This 1D element
is a way to get a discrete topology and to represent
what lies between the pixels.

Thanks to this topology, from a scalar image u,
we can construct an interval-valued image ũ on the
Khalimsky grid, which really represents the surface
corresponding to u.

Let us introduce the inclusion relationship. We say
that the real-valued image u (a single-valued func-
tion) is included in the interval-valued image ũ when
for any element x of the cubical complexes, we have
u(x) ∈ ũ(x). This inclusion relationship between a
scalar image u and an interval-valued image ũ is de-
noted by <− : we write then u<− ũ. The Fig. 1(f)
depicts an example of a scalar image u which is
“included” in the interval-valued image ũ depicted
in Fig. 1(e).

The adaptation of the MBD on the interval-valued
image, called the Dahu pseudo-distance (see [15]), is
noted d DAHU. This Dahu pseudo-distance between
two pixels x and x′ on the original image u is defined
as:

d DAHU

u (x, x′) = min
u<− ũ

d MB

u (hx, hx′) (4)

= min
u<− ũ

min
π∈Π(hx, hx′ )

τu(π), (5)

where hx and hx′ are the 2D elements of the cubical
complex corresponding to x and x′ respectively. It
means that we look for a minimal path in the cubical
complex, with the classical definition of the MBD,
and consider all the possible scalar functions u that
are “included” in the interval-valued map ũ. Return-
ing to the earlier example (Section 3.1, Fig. 1(b)), the
shortest path between the two red points in Fig. 1(c),
depicted as a blue path in Fig. 1(f) (image u is in-
cluded in the interval-valued image ũ that provides

5



the minimal path), has a length of 1. The Dahu
pseudo-distance can be interpreted as the best min-
imum barrier distance that we can have considering
that the input function is continuous in the set valued
sense (see [33]).

Note that, as the MBD, the Dahu pseudo-distance
is not a distance, because it can exist some x, y such
that x 6= y and d DAHU

u (x, y) = 0.

3.4 Efficient Dahu pseudo-distance
computation using the tree of
shapes
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(c) Tree S(u). (d) ROI.

Figure 2: The tree of shapes of an image allows to
easily express and compute the Dahu pseudo-distance
and distance maps (see [15]).

The Dahu pseudo-distance can be computed easily
and efficiently thanks to the tree-based representa-
tion of the given image. A tree of shapes (see [32, 10])
is a morphological self-dual representation of an im-
age. This tree is a decomposition of a gray-level im-
age into connected components, called shapes, which
can be arranged into a tree encoding an inclusion
relationship. A shape is a filled-in connected compo-
nent without any hole inside (its boundary is then an
iso-level line). Two iso-level lines cannot cross each
other. A very strong consequence is that shapes are

either disjoint or nested, which explains that the tree
of shapes is a tree and not a graph with cycles.

The tree of shapes is used to facilitate the com-
putation of the Dahu pseudo-distance. On Fig. 2(a),
the path between two points (x, x′) indicated by red
bullets in u is depicted by a blue line, which starts
from region B, then goes through A and C, and finally
ends in region F. Such a path is minimal because ev-
ery path in Π(x, x′) should at least cross this same
set of level lines to go from x to x′; thus the Dahu
pseudo-distance corresponds to the level dynamics of
this set of lines. Actually, this path in the image
space is exactly the (shortest in number of nodes)
path in the tree of shapes between the nodes tx and
tx′ :

•
π(tx, tx′) = 〈tx, . . . , lca(tx, tx′), . . . , tx′〉,

where lca(tx, tx′) is the lowest common ancestor of
the pair (tx, tx′) (see the blue path on the tree de-
picted in Fig. 2(c)). Note that a path in a tree is

denoted by
•
π to distinguish it from paths in the im-

age space.

The Dahu pseudo-distance in the image space be-
tween two points x and x′ can be written as the min-
imum barrier distance between the two nodes tx and
tx′ representing the components in the tree of shape
containing respectively x and x′:

d DAHU

u (x, x′) = d MB

S(u)(tx, tx′) (6)

= max
t∈ •π (tx, tx′ )

µu(t) − min
t∈ •π (tx, tx′ )

µu(t),

(7)

where µu(t) denotes the gray-level associated with
the node t of the tree of shapes S(u) of the image
u. For instance, in Fig. 2(c), the blue path gives
the sequence of node values 〈0, 1, 2, 1〉, so the Dahu
pseudo-distance is 2. There is no need to find the
best scalar image u<− ũ, nor to find the best path
π ∈ Π(x, x′) in the image space; it thus means that
the seminal definition of the Dahu pseudo-distance
(see Eq. (5)) is the best choice to be fast in time.
The new expression of this distance (see Eq. (7)) is
just a barrier strength computation (such as Eq. (1))
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on the trivial path
•
π(tx, tx′) of nodes in the space of

the tree of shapes.

3.5 Saliency map based on the Dahu
pseudo-distance

A distance map function of an image u can be derived
from the MBD as we have seen in Eq. (3). Indeed,
we can define the distance map based on the Dahu
pseudo-distance as follows:

S DAHU

u (x,X ′) = min
x′∈X′

d DAHU

u (x, x′),

where X ′ is some set of points of the domain of the
image u.

Now, let us define the corresponding set of nodes
on S(u) of X ′:

TX′ = { tx′ ; x′ ∈ X ′ }. (8)

Then, we obtain using Eq. 6 and then Eq. 3 that:

S DAHU

u (x,X ′) = S MBD

S(u) (tx, TX′), (9)

which shows how the distance map induced by the
Dahu pseudo-distance is related to the distance map
induced by the MBD. As a consequence, a Dahu dis-
tance map is the Dahu pseudo-distance from every
node in the tree to the set TX′ of seed nodes.

4 Going further with the Dahu
pseudo-distance

The Dahu pseudo-distance, which inherits its prop-
erties from the tree of shapes, is shown to be efficient
for some applications (see [15]). For this reason, we
increase its computation speed and propose an ex-
tension to color and multivariate images. We also
propose an improvement of it using a two-steps pro-
cedure taking into account the domains of the tree
of shape and of the initial image. This last measure
is related to the topographical representation of the
image.

4.1 Simultaneous computations of the
Dahu pseudo-distance and the
tree of shapes

In natural images, the border of the image is mostly
background (see [43]). Similar to previous works
(see [46, 39, 20]), we compute the distance map,
which is the Dahu pseudo-distance of every pixel in
the image to the border of the image. In particu-
lar, the Dahu pseudo-distance can be computed while
constructing the tree of shape. The construction of
the tree of shapes is mentioned in [14]. Our algo-
rithm (see Algo. 1) is a modification of the sorting
procedure used to compute the tree of shapes: we
add some operations (see the blue lines) to the pixel
sorting procedure during the tree construction.

Our algorithm computes the Dahu pseudo distance
from seed points (the border of the image) to every
other point in the domain of the image. The process
follows two steps. During the first step (lines 2 - 18),
it crosses all points in the domain using a propaga-
tion front. Every pixel is crossed only once (thanks
to deja vu variable). This propagation front is man-
aged by a hierarchical queue (q). Then, the algo-
rithm computes two structures min im and max im;
min im and max im represent the lower and higher
levels arisen during the propagation respectively. In
the second step (lines 19 - 20), the Dahu pseudo dis-
tance is computed from the two structures min im
and max im. All points are crossed (whatever is the
order) and the Dahu distance is simply the difference
between max im and min im at the considered point.

Our algorithm can be explained thoroughly as fol-
lows. Initially, we add an artificial border surround-
ing the image domain with the unique value l∞. p∞
is one point from the border. Only one step remains
to be able to proceed to the front propagation: we
must input the set-valued map U computed thanks
to a span-based interpolation on the image u. Then,
we call the sorting procedure described in [14], which
is employed by using a hierarchical queue q; the cur-
rent level is denoted by l. The Dahu pseudo-distance
of the starting point is set at the value 0. Since we use
interval-valued maps, we have to decide at which level
to enqueue those elements. The face p is enqueued at
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the value of the interval U(p) which is the closest to
l, denoted l′ (see the procedure PRIORITY PUSH).
The value l′ is compared with the minimum and max-
imum values of its neighbors to update the Dahu
pseudo-distance. When the queue q(l) at the cur-
rent level is empty, the procedure PRIORITY POP
decides whether the next level to be processed is less
or greater than l. This loop continues until all of
the pixels have been visited. The resulting pseudo-
distance is then obtained. More information about
the PRIORITY PUSH and PRIORITY POP proce-
dures can be found in [14]. Note also that to finally
obtain the tree of shapes, three procedures must be
executed (see Algo. 3 in [14]), but we will not go into
any further detail since this is not the subject of our
article.

When the seed pixels are not placed in the outer
border of the image (for example, if they are placed
at the center of the image), we need to build the tree
of shapes first, and then we can compute the Dahu
pseudo-distance. The major difference with a clas-
sical saliency map, defined in the image space (such
as the one of Eq. (3)), is that the tree structure is
one-dimensional. Since the Dahu pseudo-distance on
the tree (given by Eq. (7)) has the form of a barrier
“max - min”, the saliency map S MBD

S(u) at each node tx
can be easily computed by a propagation method on
the tree using a priority queue. Afterwards, getting
the 2D saliency map S DAHU

u means reading for each
x the value of S MBD

S(u) at tx. Eventually, once we have

computed the tree of shapes S(u), the computation
of a saliency map x 7→ S DAHU

u (x, X ′) is immediate
(whatever the set X ′).

Last, let us mention that the representation of an
image into a tree of connected components is easy
to handle (see [7]). Furthermore, the tree of shapes
of an image can be computed in quasi-linear time
w.r.t. the number of pixels (see [14]), and can be
parallelized (see [13]).

4.2 Extending the Dahu pseudo-
distance to multivariate images

As mentioned before, the previous MBD methods
(see [46, 39]) are only defined on grayscale images

or on separate channels of color images. In this last
case, they compute the mean or the maximal value
of the distances obtained on each separate channel
(see [39] for details). This approach is not satisfying
for the purpose of image segmentation: we generally
obtain different paths for each color, and then com-
puting the mean or the max value of the distances
makes no sense and cannot be used for image seg-
mentation. An example of the computation of the
MBD is illustrated in Fig. 3(a).

In [23], a vectorial minimum barrier distance
(VMBD) is proposed to compute the MBD on a mul-
tivariate image. However, this VMBD is not easy to
compute directly on the image. Moreover, the VMBD
is not effective when computing multiple distances
between multiple points in images. To solve this
problem, in this section, we present a Dahu pseudo-
distance extended to multivariate images based on
the tree space. In [34], this color Dahu pseudo-
distance is proposed to detect automatically docu-
ments in images.

The tree of shapes, primarily defined on gray-level
images, has been recently extended to multivariate
data (see [8]); this extension is called the Multivariate
Tree of Shapes (MToS). It yields a tree mapping the
inclusion relationship of shapes in the image. Such
a representation is of prime importance for computer
vision (see [5]) because it satisfies strong invariance
properties featured by natural images, such as self-
duality and local contrast changes (see [9]).

However, the definition of the Dahu pseudo-
distance on the tree of shapes (see Eq. (7)) cannot
be used without modification/improvement. In the
work of [23], four different path costs (linear and
non-linear) have been presented: the diameter, max-
imum diameter, city-block diameter and volume of
the bounding box. Using their conclusion and also
thanks to our experiments, we chose here to employ
the city-block diameter to compute the distance. The
choice of the path cost function is debatable but in
practice it has a very low impact. Changing the un-
derlying distance changes the magnitude of the result.
As long as the underlying choice does not change the
order of pixels, all applications relying on the Dahu
pseudo-distance will mostly not be impacted.
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Let us now consider that u is a multivariate image,
t is a node of the MToS of u, and µu(t) is the vector
value associated with the node t. The superscript
i indicates which one of the N components of the
vector is taken into account. We can then extend the
Dahu pseudo-distance like this:

d DAHU

u (x, x′) =
∑
i∈{1..N} αi τ

(i)
u (

•
π(tx, tx′) ).

(10)

with:

τ (i)
u (

•
π) = max

t∈ •π
µ(i)
u (t) − min

t∈ •π
µ(i)
u (t), (11)

where αi is the coefficient weighting each channel,
thereby representing the importance of the channel.

The vectorial Dahu pseudo-distance between two
points x and x′ in the domain of the image u can be
computed using Algo. 2. After the computation of
the tree of shapes, we find the nodes tx and tx′ which
correspond to two points x and x′ respectively. Then
the shortest path

•
π(tx, tx′) between these two nodes

is computed. Therefore, we are able to compute the
Dahu pseudo-distance on each channel (see Eq. (11))
and sum up to get the vectorial Dahu pseudo-distance
(see Eq. (10)). Please be advised that, the MToS is
computed from the ToS of each image channel by
merging some marginal shapes. Due to its tree prop-
erties, it is not a complete representation of an image.
The node of the final tree is associated with multi-
ple values of the image. Therefore, a node has to be
assigned to a single value computed from the set of
values it contains. In our case, we set each node in
the MToS using the median value of its pixels. As a
result, the vectorial Dahu pseudo-distance computed
on the color image is an approximation of the dis-
tance between two points in the image. The whole
process to compute the vectorial Dahu distance is il-
lustrated in Fig. 3(b). This way, we obtain a “coher-
ent” shortest path between two pixels in the image
(see Fig. 3(b)). As a consequence, we also solve the
problem of the different paths of the previous MBD
methods that we mentioned at the beginning of this
section.

Relying on the presentation of the vectorial Dahu
pseudo-distance on multivariate images in the previ-
ous paragraphs, we apply it here on RGB color im-
ages. To be rigorous, the coefficient, which is the
gamma correction in this case should be applied to
get linear ranges. Obviously, for many color spaces
(like H.L.S.), these coefficients are not valid. Instead
of looking for correct coefficients, it is always possible
to convert color in a color space where each channel
is comparable. Since the importance of each channel
is considered equally, we propose to fix:

αi = 1/N. (12)

Then, for RGB-color images, our equation be-
comes:

d DAHU

u (x, x′) =
1

3

∑
i∈{R,G,B} τ

(i)
u (

•
π(tx, tx′) ).

(13)

Please note that, although Eq. (13) looks simple,
we have here a strong result. The Dahu pseudo-
distance is one of the optimal paths between two
points in the image space; this path is such that the
set of colors on the path has the smallest 3D bounding
box in the color space. This is a highly combinato-
rial problem which cannot be solved efficiently in the
image space. Our contribution here is to turn this
problem into an efficient and straightforward compu-
tation in a tree space. The Dahu pseudo-distance
in the gray-scale image is illustrated in Fig. 4(a),
the Dahu pseudo-distance on the color image is il-
lustrated in Fig. 4(b) as the size of the bounding box
or the length of the red line.

As presented in Eq. (13), the input of the process
is a multivariate image when the output is a (scalar)
distance. However, in Fig. 3(b), the output of the
process can also be a multivariate image (one dis-
tance map by channel). In the experimental section,
we will show some examples of what we call abusively
“vectorial distance maps”. Note that we do not use
the vectorial distance map for an evaluation purpose
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but for visualization only. It is actually a multivari-
ate image, which is computed from a multivariate in-
put based on the vectorial Dahu pseudo-distance. To
avoid ambiguities, we will refer in the sequel to viso
for vectorial-input-scalar-output, to vivo for vectorial-
input-vectorial-output, and to siso for scalar-input-
scalar-output Dahu pseudo-distances.

Additionally, our vectorial Dahu pseudo-distance is
not restricted to 3 channels and is fully usable on any
kind of multi-channel images because it relies on the
MToS. It means that, we are able, without any addi-
tional effort, to compute our vectorial Dahu pseudo-
distance on multi-modal images or hyper-spectral im-
ages according to Eq. (10). The coefficient on each
channel in this equation has to be revisited. A simple
idea to refine these weights, is to compute a Principal
Component Analysis (abbreviated as P.C.A.) and use
eigenvalues to weight the sum.

This extension is a major one, as many existing
algorithms, previously restricted to grayscale images,
can now be applied on color, multi-spectral, or even
hyper-spectral images at low cost. Most of the time,
these algorithms work as-is by simply changing the
underlying distance (substituting the classical MBD
by our vectorial Dahu pseudo-distance). We will illus-
trate this further, on satellite multi-spectral images,
and even on medical multimodal images.

4.3 Extending the Dahu pseudo-
distance with spatial information

Our vectorial Dahu pseudo-distance is only defined
in the tree space, not in the image space. It is am-
biguous for us to visualize this distance on the im-
age. Additionally, in the previous section, our dis-
tance is proved to solve the problem of the different
paths of the previous MBD methods, but we have
not discussed the way to find this coherent path in
the image space. Therefore, in this section, we de-
scribe our method for computing the Dahu short-
est path. This proposed improvement of the Dahu
pseudo-distance is used in competition with the com-
monly used geodesic distance.

The goal of MBD computation is to find optimal
path connecting seed pixels and every other pixel [20].

In case of the Waterflow-MBD method [20], the
parenthood relation between two neighbor pixels is
recorded during the propagation process. The short-
est path problem is simply tracking back the relation
from the destination pixel until the seed pixel. On
the other hand, the MST-MBD finds the candidate
path from seed pixel to the others relying on the Min-
imum spanning tree. This tree largely reduces the
search space of the shortest path. However, this sim-
ple structure is sensitive to noise and blur, thereby
leading to some important deviation from the short-
est path.

We present here an extension of the Dahu pseudo-
distance by taking into account the spatial informa-
tion between two pixels in the image. In other words,
it is a combination between the Dahu pseudo-distance
computed on the tree and the geodesic distance com-
puted in the image restricted to all paths minimizing
the Dahu pseudo-distance. This improvement is a
“two-steps” procedure, illustrated in Fig. 5, in which
we look for the minimal path between the two given
pixels x and x′ (the two red points in Fig. 5 on the
left) and we find the red path in Fig. 5 on the right.

In the first step, we denote par(tx) as the parent
node of node tx in the tree, and lca(tx, tx′) as the
lowest common ancestor of the nodes tx and tx′ . The
shortest path

•
π(tx, tx′) between two nodes tx and tx′

is the sequence of nodes that begins at node tx, goes
through the lowest common ancestor lca(tx, tx′), and
ends at node tx′ . When we have tx 6= tx′ , the shortest
path

•
π(tx, tx′) can be formulated as follows:

〈tx, par(tx), . . . , lca(tx, tx′), ..., par(tx′), tx′ , 〉 (14)

otherwise it is the trivial path 〈tx〉. This shortest

path
•
π(tx, tx′) is illustrated in red in Fig. 5 in the

middle.

The shortest path
•
π(tx, tx′) in the tree corresponds

to a region on the image. We call this region the
shortest path region. In Fig. 5, the shortest path be-
tween nodes B and F is illustrated as the red path.
This path goes through regions B, A, C and F . It
does not traverse regions O, D and E. Therefore, the
shortest path region in this case is the white region
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in the image (on the right in Fig. 5). The short-
est path region is actually the set of all the possi-
ble paths between the two given points in the image
space minimizing the Dahu pseudo-distance. This re-
gion is connected according to the properties of the
connected component trees. Therefore, it ensures to
generate a coherent path between the two given pix-
els in the multivariate image. As a consequence, this
extended Dahu pseudo-distance solves the problem
that we presented at the beginning of Section 4.2,
in which the MBD is computed separately on each
channel (but it does not provide a unique path in the
image domain).

In the second step, we consider here the spatial
information between two points in the image. We
want to find a path between the two given pixels x
and x′, which belongs to the shortest path region, so
that it has the shortest length in the image space (or
more precisely, the geodesic distance in the shortest
path region). The optimal path is depicted in Fig. 5
as the red line. This path is the shortest path in the
sense of the Dahu pseudo-distance between two given
pixels x and x′. The shortest path is found in this
region by using the heuristic A∗ algorithm (see [17]).
This algorithm is a popular technique used in path-
finding and graph traversals, especially in games and
web-based maps. It is based on the movement cost to
move from the seed pixel to a given pixel, and the es-
timated movement cost to move from that given pixel
on the image to the destination. This optimal path
has different meanings. It is not only the shortest
path in the “color space” but also the shortest path
in the image space.

This computation would not have been possible
with the color MBD. As seen in Fig. 3, the color
MBD may provide different paths on the different
channels. On the contrary, the Dahu pseudo-distance
makes this combination possible because it provides
a unique path in the image, regardless of its number
of channels.

This property of the Dahu pseudo-distance has ap-
plications related to the shortest path, as will be illus-
trated with several experiments in the next section.

5 Experimental Results

In this section, we explore the properties of the vecto-
rial Dahu pseudo-distance via some experiments re-
lated to visual saliency detection, to noise stability
and to the contrast of the Dahu pseudo-distance. Fi-
nally, we provide a comparison between the complex-
ities (in time) of the Dahu pseudo-distance vs. some
other MB-based distances.

5.1 Visual saliency detection

To show the robustness of the vectorial Dahu pseudo-
distance, we start with visual saliency detection ap-
plications (see [46, 39, 20]). We remind that visual
saliency detection has been widely used in computer
vision to obtain visual attention areas in the image.

First, we compare the vectorial Dahu pseudo-
distance with the Dahu pseudo-distance on separate
channels. Then, we compare the vectorial Dahu
pseudo-distance with state-of-the-art MB-based dis-
tances.

Datasets. To perform this evaluation, we use the
following four large benchmark datasets.

1. MSRA-10K (see [11]), which contains 10000 im-
ages with pixel accurate salient object labeling
for each image.

2. DUTOMRON (see [48]), which consists in 5166
challenging images, each of which has one or
more salient objects and complex background.

3. ECSSD (see [35]), which contains 1000 images
along with pixel-wise ground truth masks, and
includes more salient objects under complex
scenes.

4. PASCAL-S (see [25]), which contains 850 images
and 1296 object instances. This one is designed
to eliminate the center bias and color contrast
bias.

Among these datasets, the DUTOMRON dataset is
the most challenging.

Evaluation metrics. We use the following mea-
sures.
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• The Precision-Recall (PR) curve is used to eval-
uate the overall performance of a method con-
cerning its trade-off between the precision and
recall rates.

• The Mean Absolute Error (MAE), which is the
average difference between a saliency map S
(gray-level image) and a ground-truth image GT
(binary image):

MAE =

∑
x∈D |GT (x)− S(x)|

|D| ,

(15)

with D the domain of the initial image.

• An Fβ-measure defined by:

Fβ = (1 + β2)× P ×R/ (β2 × P +R),

(16)

where P and R are respectively the precision and
the recall which we mentioned above. We set
β2 = 0.3 (because it is the classical setting in
the visual saliency community).

• The percentage curve, which shows the number
of images in the dataset having a Fβ score over
a specific value. To compute it, we threshold
the saliency map at each value between 0 and
255, and we choose the “best” threshold set, that
is, the one that gives the highest Fβ score (we
call this score Fβ

max). After its computation
for each image in the dataset, we compute the
corresponding histogram (we choose a number
of bins equal to 10), and we finally obtain the
percentage curve.

• A score (briefly called EMD) inspired from [4]
relying on the Earth Mover’s Distance, which
is the cross-bin distance function. It is used as
a measure to estimate the dissimilarity between
two signatures. In our case, the EMD is com-
puted as the cost between the histogram of Fβ
score and the histogram of the ground truth im-
age, which is equivalent to one bin at the value
Fβ = 1.

5.1.1 Comparison of saliency maps obtained
by the usual Dahu pseudo-distance on
separate channels and by our vectorial
(“color”) Dahu pseudo-distance

Experimental setting. We compare our (“color”)
Dahu saliency map (the extension of the Dahu
pseudo-distance on the color images which are men-
tioned in Section 4.2) with the Dahu saliency map
computed on separate channels (gray, red, green,
blue) and a simple combination of saliency maps com-
puted on each three color channels (pixel-wise aver-
age of the three channels).

Initially, input images are resized proportionally
so that the maximum dimension is 300 pixels. Then
to use the Dahu pseudo-distance in visual saliency
detection, we adopt two priors about the background
in natural images, namely boundary and connectivity
priors, which are proposed in [43]. A border with
the median value of all of the pixels on the boundary
of the image is added to the image. We consider
all the pixels in the added border of the image as
seed pixels. For the post-processing step, we used
the same method as presented in [46] to “normalize”
the resulting saliency maps.

Evaluation using PR curves. In Fig. 6, we show
the PR curves for the saliency maps: directly com-
puted on color images, computed on grayscale im-
ages, a pixel-wise combination saliency map of the
three channels (as presented in [46]). The vectorial
Dahu pseudo-distance outperforms the Dahu pseudo-
distances on grayscale images and the combination
of three channels in all four datasets. On the most
challenging dataset (DUTOMRON), the performance
of the distance maps deduced from Dahu pseudo-
distance are lower than the performance of the one on
other datasets. Note that in this dataset, there are
multiple objects in images and the color contrasts be-
tween the foreground and the background are low.

Evaluation using MAE. The MAE scores of com-
pared methods are shown in Table 1. Note that the
lower the MAE is, the better the performance of the
method is. The comparison of the saliency maps
shows that the Dahu pseudo-distance does not give
a better score on the grayscale images compared to
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the separate channels (R/G/B) while the pixel-wise
combination saliency map does improve. This com-
parison shows also that the vectorial Dahu pseudo-
distance achieves better scores than all other meth-
ods.

Evaluation using Fβ-measure. We adopt the Fβ-
measure proposed in [29] to evaluate saliency maps.
In Fig. 6 and in Table 1, the vectorial Dahu pseudo-
distance achieves significantly better scores than the
Dahu pseudo-distance on grayscale images, and than
the combination across all datasets. We also no-
tice that the Fβ-measure curves of the Dahu pseudo-
distance have stable and flat curves, which is an ad-
vantage because the “best” threshold remains un-
known and can vary a lot from an image to another.

Evaluation using percentage curves and EMD.
In Fig. 6, the vectorial Dahu pseudo-distance pro-
vides better percentage curves than the others. No-
tably in the MSRA-10K and ECSSD dataset, the
number of good saliency maps (Fβ-measure > 0.8)
of the vectorial Dahu pseudo-distance is higher by
around 7% than the Dahu pseudo-distance on sep-
arate channels. In the case of the MSRA dataset,
the vectorial Dahu pseudo-distance has more than
60% good saliency maps with the only assumption
that the boundary is mostly background. Addition-
ally, the EMD results of the vectorial Dahu pseudo-
distance is lower than the Dahu pseudo-distance on
the separate channel, which proves that our proposed
distance improves saliency map computation.

We present here some examples of saliency maps
induced by the Dahu pseudo-distance. The saliency
map (“viso”) and the color representation of the
saliency map (“vivo”) are respectively shown in
Fig. 7(d) and in Fig. 7(c). The “optimal” visual qual-
ity is reached for the vectorial Dahu pseudo-distance
(compared to the Dahu pseudo-distances on separate
channels or on the grayscale image). Indeed, the main
barrier is clearly visible around the objects. The ro-
bustness of the vectorial Dahu pseudo-distance is easy
to explain: the tree of shapes on the color image con-
tains more information and is more structured than
the tree of shape computed on separate channels.

In another example (see Fig. 8), we compare vi-
sually the saliency map deduced from the vectorial
Dahu pseudo-distance and the Dahu pseudo-distance
when the seed point is placed in the center of the im-
age. The flower zone in the “viso” image is spotted
and is well-contrasted with the background, whereas
“siso” image does not well distinguish between the
background and the flower. Besides, in the “viso”
image, similar intensities are obtained on most of the
background regions in the distance map. Typically,
the more homogeneous the distance map is in the
background, the fewer seed points we need to seg-
ment the image. This is an advantage of the vectorial
Dahu pseudo-distance to reduce the number of seed
points for object segmentation.

5.1.2 Comparison of saliency maps of the
vectorial Dahu pseudo-distance with
state-of-the-art methods

Experimental setting: In this section, the saliency
map computed by the vectorial Dahu pseudo-distance
is compared with some saliency maps deduced from
multiple MB-based methods: Fast-MBD (see [46]),
MST-MBD (see [39]), and Waterflow-MBD (see [20]).
To compare these methods, we modify them, as [20]
do, by adding color and computing a color MBD by
summing MBD on each channel. For the MST-MBD
method, we construct an MST from the color image,
then we compute the MBD in this tree. In order
to fairly evaluate the performance of these methods,
we add an outer border to the image and consider
all pixels on the boundary image as the background.
Note that, in this experiment, we just want to com-
pare the Dahu pseudo-distance with the MB-based
distance, we do not try to achieve the best results of
the saliency maps. The same post-processing to nor-
malize the saliency map, as in the previous section,
is applied here.

Evaluation using MAE: Our method gives better
MAE scores than other MB-based methods across
all datasets. However, the difference is very low.
It can be explained by the fact that the vectorial
Dahu pseudo-distance tends to give distance values
lower than other MB-based distances, especially in
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the background regions, which constitute the largest
part of an image.

Evaluations using the Fβ-measure: The Fβ-
measure is illustrated in Table 2. At a glance, the
vectorial Dahu pseudo-distance shows equivalent re-
sults to the MST-MBD method and lower results
than the Fast-MBD and Waterflow-MBD methods.
However, the differences between these methods are
minimal. In the DUTOMRON dataset, the Dahu
pseudo-distance achieves better Fβ-measures than
other methods. Especially, in the MSRA dataset, the
Dahu pseudo-distance and MB-based methods can
achieve a high value of 0.82.

Evaluation Using EM distance. For the EMD,
the Fast-MBD and the Waterflow-MBD methods
achieve similar results in all datasets, whereas the
Dahu pseudo-distance gives comparable results with
the MST-MBD method, and slightly lower results
than the Fast-MBD and the Waterflow-MBD meth-
ods but here again, the difference is rather low.

Some example images are given in Fig. 9. In these
images, the backgrounds are not homogeneous like
in the scene of the sky, the field of grass or even
the sofa image. The Dahu pseudo-distance seems to
work better in these cases and achieves better per-
formance than the MB-based distances. The tree of
shapes properties and the insertion of the inter-pixels
between the neighbor pixels allow the Dahu pseudo-
distance to get the lower value compared to the MB-
based distances. Additionally, each node on the tree
of shapes is set at the median value of all the pixels
in the node, which reduces the impact of noise in the
color images. In the next section, we will explore this
problem in greater detail.

5.2 Efficiency and robustness of the
algorithm

In this section, we investigate the ability to distin-
guish object and background of the Dahu pseudo-
distance. We also analyze the noise stability of the
vectorial Dahu pseudo-distance when noise in the im-
age increases.

5.2.1 Ability to distinguish object and back-
ground

We analyze here the ability to separate the object
from the background. To do so, we measure the
difference between the Dahu pseudo-distance and
the MB-based distances (MST-MBD and Waterflow-
MBD) between two random markers in the image by
using the ratio between the inter-distance (the dis-
tance from a marker outside the object to a marker
inside the object) and the intra-distance (the distance
from two markers inside the object). We cannot in-
clude Fast-MBD in this comparison because the Fast-
MBD (see [46]) method works only when all the seed
pixels are in the boundary of the image.

We randomly create 100 markers in the image and
sequentially compute the distance between two mark-
ers. The Dahu pseudo-distance between two markers
X and X ′ is computed this way:

d DAHU

u (X,X ′) = min
x′∈X′

min
x∈X

d DAHU

u (x, x′). (17)

Using the binary ground truth, the inter- and intra-
distances are well defined. The contrast metric is
defined by the ratio between the average of the inter-
distances and the average of the intra-distances:

R =

1
N1

∑
N1

dinter

1
N2

∑
N2

dintra

(18)

in which N1 and N2 are respectively the numbers of
inter- and intra-distances.

In Table 3, the ratio of the Dahu pseudo-distance
is higher than the one of the MB-based distances in
all datasets. It means that the Dahu pseudo-distance
is more contrasted than the MB-based distances. We
can give an intuition of this result. During the front
propagation process while constructing the tree of
shapes, the pixel can pass through the inter-pixels.
As a consequence, the Dahu pseudo-distance tends
to decrease its path cost between pixels in the same
background while retaining the contrast between ob-
jects and background. It leads to an increase of the
ratio of the inter- and intra-distances of the Dahu
pseudo-distance.
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5.2.2 Robustness to noise

This section shows the impact of noise on the Dahu
pseudo-distance and MB-based distances. An exam-
ple image is chosen in Fig. 10 where two markers p1

and p2 (5 × 5 pixels) are set in the background and
another marker p3 is placed inside the object. A zero
mean Gaussian noise is added to the image with the
respective variance values: 0.0001, 0.001, 0.01, 0.1
and 0.5. One hundred noisy images are generated for
each value of variance. The three markers are fixed
for the entire experiment. We observe here the inter-
distance d(p1, p3) and intra-distance d(p1, p2) during
the test of the Dahu pseudo-distance or the MB-based
one.

The results of the experiments are presented in
Fig. 11 with the mean values as well as the asso-
ciated confidence intervals. In both Fig. 11(a) and
Fig. 11(b), we can see the evolution of the Dahu
pseudo-distance and other MB-based distances. The
MST-MBD and Waterflow-MBD both increase when
the variance of noise increases. Especially when the
noise variance is high, the difference between inter-
and intra-distances of MST-MBD and Waterflow-
MBD is minimal, whereas the ratio of inter- and
intra-distances of the Dahu pseudo-distance remains
more stable. This experiment shows that the vec-
torial Dahu pseudo-distance is robust to noise varia-
tions. This property is important for many real-world
applications.

5.3 Speed performance

In this section, we measure the time necessary to
compute numerous distances between two points us-
ing the Dahu pseudo-distance and other MB-based
distances. The experiment is implemented between
100, 1000, 10000 and 100000 pairs of pixels on 20
tested images. The evaluation is conducted using a
2.6 GHz CPU with 8GB of RAM. The size of the test
image is the same as used in the previous experiment
(the maximum dimension is 300 pixels). Our method
is implemented in C++.

The execution time is illustrated in Fig. 12 with
means and confidence intervals. The construction of

our tree of shapes is based on the max-tree algorithm
which is designed in [6]. The whole process is linear
on average (and quasi-linear at worst). The compu-
tation of the ToS runs at about 20 FPS when used
on grayscale images, whereas it takes about 1 second
to construct the MToS of the color image. Although
the computation of the MToS is longer than the ToS,
the vectorial Dahu pseudo-distance achieves better
performances as we presented in Section 5.1.1. De-
pending on the application, we can choose either the
ToS or MToS to compute the Dahu pseudo-distance.
On the other hand, the construction of the MST is
fast (30 FPS) and easy to implement. However, this
method is sensitive to the impact of noise and usually
does not provide good results in this case.

As we can see in this figure, there is another con-
venient point of the Dahu pseudo-distance. For a
small number of distances, the Waterflow-MBD has
an advantage compared to the vectorial Dahu pseudo-
distance. However, when the number of distances
increases, the Dahu pseudo-distance and the MST-
MBD are much faster than the Waterflow-MBD. It
can be explained by the fact that the Dahu pseudo-
distance and the MST-MBD take a fixed time to
construct the tree, but when the tree is computed,
the time to compute the distances is extremely fast
thanks to the fast search of the nodes corresponding
to the points in this tree. This is a huge advantage
for some applications.

6 Applications

The main use of the Dahu pseudo-distance is visual
saliency detection, which is considered as an inter-
mediary step for various applications such as object
detection, object segmentation and tracking. The vi-
sual saliency detection is carefully investigated in the
previous section. In this section, we demonstrate the
ability of the Dahu pseudo-distance in other appli-
cations. First, we present the shortest path finding
application, which is a direct application of the exten-
sion of the Dahu pseudo-distance taking into account
the spatial information in the image. Secondly, the
Dahu pseudo-distance is applied to segment the white
matter region in multi-modal medical images. In the
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last application, we exploit the Dahu pseudo-distance
to segment objects in satellite images to validate the
ability of the Dahu pseudo-distance on multi-spectral
images.

6.1 Shortest path finding

In this section, we validate the shortest path find-
ing application which is presented in Section 4.3.
To do that, we compare the shortest paths found
by the Dahu pseudo-distance and by the other MB-
based distances. Tested images, which are extracted
from [40] and from [18] such as a noisy synthetic im-
age, a map image, a retinal photography and a thin
glass fiber are illustrated in Fig. 13.

In the synthetic spiral image (see Fig. 13, column
1), there are two parts: the spiral and the back-
ground. We can see that the shortest path provided
by the Dahu pseudo-distance is “shorter” than the
ones provided by the other MB-based distances. The
two chosen markers are in the background, and the
shortest path between them based on our distance,
follows the shape of the spiral as we expected.

Similarly to the map image (Fig. 13, column 2), the
goal is to find the shortest path connecting two points
located on the sea near the coast. The shortest path
based on the Dahu pseudo-distance is still better than
the ones using other MB-based pseudo-distances.

In the retinal image (Fig. 13, column 3), the
two chosen markers are placed on a blood ves-
sel. As demonstrated, the Dahu pseudo-distance
and Waterflow-MBD give satisfying results while the
MST-MBD is sensitive to noise and to blurring (its
shortest path is deviated from the blood vessel).

Similarly, in the last example (see Fig. 13, column
4), the markers are placed on the glass fiber. The
image is quite blurred, and the intensities of pix-
els along the fiber are varying, some parts of the
fiber are darker than other parts. However, both the
Waterflow-MBD and the Dahu pseudo-distance still
find the shortest path that follows the fiber.

To conclude, the Dahu pseudo-distance achieves a
better performance than the other MB-based pseudo-
distances in this context.

6.2 Dahu pseudo-distance on multi-
modal and multispectral images

Multivariate images are widely used in various ap-
plications, ranging from medical imagery to satellite
remote sensing. Multivariate can designate a multi-
spectral, multi-modal or multi-source image which
corresponds to a set of image channels. A color im-
age is just a special case of multivariate image. In
this section, we present the application of the vec-
torial Dahu pseudo-distance in multi-modal medi-
cal and multi-spectral satellite images. We use the
same strategy to handle them, which is illustrated
in Fig. 14. The method begins with the construction
of the MToS. Then we put markers in the image and
compute a distance map from these markers based
on the Dahu pseudo-distance. Finally, we use simple
thresholding to segment the object in the image.

6.2.1 Multimodal medical images

Multi-modal images are becoming increasingly com-
mon in diagnosis and treatment planning (see [30]).
They are defined as a combination of imaging modal-
ities, which are acquired using different techniques
such as computed tomography (CT), magnetic reso-
nance imaging (MRI), and positron emission tomog-
raphy (PET). Multi-modal images are also used to
overcome the limitations induced by specific activi-
ties of each individual technique. In this subsection,
we applied the vectorial Dahu pseudo-distance to seg-
ment the white matter in 3D brain MR images.

We consider two images: the T1 (Fig. 15(a)) and
the T2-FLAIR slice (Fig. 15(b)) as inputs of our ex-
periment. Then, we construct the MToS on these
images to get the mutual information from differ-
ent machines. A marker (5 x 5 pixels) is put on
the white matter region to compute a Dahu distance
map (Fig. 15(c)). We first remark that the MToS
preserves the geometric information of the two chan-
nels and mixes them in a sensible way. We further
observe that the distance map gives low values to the
white matter region. A simple threshold method is
used to segment the white matter region in the image
(Fig. 15(d)). As can be seen, our method not only
achieves good segmentation results compared to the
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ground truth image, but the vectorial Dahu pseudo-
distance proves to be efficient for this experiment.

6.2.2 Satellite multi-spectral images

Over the past few years, the use of multi-spectral im-
ages has been increasingly investigated in many ap-
plications, especially in target detection and recogni-
tion (see [3]). Multi-spectral images collect informa-
tion from hundreds of spectrum bands, thus provid-
ing a powerful tool to discriminate different objects.
Similarly to the usage of the vectorial Dahu pseudo-
distance in the previous section, we employ the vecto-
rial Dahu pseudo-distance to segment object regions
in the image.

We apply our method on the Pavia University
dataset (see [26]). It consists of 103 images which cor-
respond each to a spectral channel. The dataset has
a size of 610*340 pixels, contains nine classes which
represent trees, meadows, asphalt, etc. The images
are pre-processed with a P.C.A algorithm (see [22]) to
reduce the correlation among the bands. This algo-
rithm also selects the best bands for object detection.
This pre-processing relies on the fact that neighbor
bands of multi-spectral images are highly correlated
and contain mutual information about the object.

In our case, we choose the first 5 channel compo-
nents. As we can see in Fig. 16, some objects clearly
appear in some images but not in the others. The
MToS is then constructed on these images. We put
some markers in the image to compute the distance
map. Then a simple threshold is used to segment the
object in the image. As we can see in Fig. 16, our
method can segment the objects in the image with
high accuracy, for instance, the painted metal sheets,
the bitumen, and self-blocking bricks classes. These
results demonstrate the robustness of the vectorial
Dahu pseudo-distance in this context.

7 Conclusions and perspectives

In this paper, we have studied the Dahu pseudo-
distance and have presented multiple improvements.
First, we have introduced a vectorial extension capa-
ble of dealing with multi-channels images. Obviously,

this vectorial Dahu pseudo-distance processes color
images which is already a great improvement. How-
ever, it is also not restricted to three channels images.
Second, we have improved the Dahu pseudo-distance
by combining the pseudo-distance with information
on the spatial domain of the images. Such an im-
provement opens new areas of applications, in com-
petition with the commonly used geodesic distance.

After having compared our new versions with sev-
eral MB-based pseudo-distances in many situations
and applications, we have proven that taking into
account the color of the images brings noticeable im-
provements. We have also proven that our vectorial
Dahu pseudo-distance is less affected by noise in the
image than other MB-based pseudo-distances.

We have further demonstrated the improvement in-
duced by this new vectorial Dahu pseudo-distance,
since we have shown that it can handle multimodal
and multispectral images by testing it on multimodal
medical images and multi-spectral satellite images.

Another advantage of our new vectorial version is
that it comes at almost no additional cost. Thanks
to a clever representation of images, the multivariate
tree of shapes, the distance is quasi instantaneous to
compute (and the tree can be computed in a quasi
linear time with respect to the number of pixels of
the images). It is then possible to use it in real time.

In the future, we plan to use the vectorial Dahu
pseudo-distance in some applications like automatic
object detection and interactive segmentation. Fur-
thermore, we want to investigate the case of embed-
ded environments.
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[13] S. Crozet and T. Géraud. A first parallel al-
gorithm to compute the morphological tree of
shapes of nD images. In Proceedings of the IEEE
International Conference on Image Processing
(ICIP), pages 2933–2937, 2014.
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Algorithm 1: Modification of the sorting pro-
cedure of the tree of shapes to compute the
Dahu pseudo-distance.

Data: Interval-valued image U , Image
domain D, Seed Point p∞

Result: Dahu pseudo-distance
1 begin

/* q, a priority queue */

/* l, the current level */

/* N(p), the set of neighbors of p
*/

2 for all h ∈ D do
3 deja vu(h) ←− false

4 PUSH(q[l∞], p∞);
5 deja vu(p∞) ←− true;
6 l←− l∞;
7 Image2d min im, max im, Dahu;
8 min im (p∞) ←− l ;
9 max im (p∞) ←− l ;

10 Dahu (p∞, p∞) ←− 0 ;
1212 while q is not empty do
13 p ←− PRIORITY POP (q, l);
14 for all n ∈ N(p) such as

deja vu(n)== false do
15 l′ ←− PRIORITY PUSH(q, n, U, l) ;
16 deja vu(n) ←− true ;
17 min im (n) ←− min(min im (p),l′)

;
18 max im (n) ←− max(max im (p),l′)

;

19 for all p ∈ D do
20 Dahu (p∞, p) ←− max im (p) - min im

(p) ;

21 return(Dahu)

(a) A procedure to compute the MBD and
their shortest paths in the color image when
processing separately each channel.

(b) A procedure able to compute the vectorial Dahu
pseudo-distance. Even with color images, our method is
able to obtain a coherent shortest path between two pixels
in the image.

Figure 3: The computation of the MBD and of
the vectorial Dahu pseudo-distance in a color im-
age. Contrary to the MBD computed on color im-
ages, which may find a different path in the image
for each channel, the Dahu pseudo-distance finds a
same path in the image minimizing the sum of the
barriers in all channels simultaneously.
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Algorithm 2: Computation the Dahu
pseudo-distance between two pixels in the im-
age.

Data: Image U , Image domain D, Point x, x′

Result: Dahu pseudo-distance
1 Compute(MToS(u));
2 Compute(tx), Compute(tx′);
3 Compute(lca(tx, tx′));

4 Compute(
•
π(tx, tx′));

5 for i ∈ [1, N ] do

6 Compute(min
t∈ •π (tx,tx′ )

µ
(i)
u (t));

7 Compute(max
t∈ •π (tx,tx′ )

µ
(i)
u (t));

8 Compute(τ
(i)
u (

•
π(tx, tx′)))(Eq. (11));

9 end
10 Compute(d DAHU

u (x, x′))(Eq. (10));
11 return(d DAHU

u (x, x′))

(a) Dahu in the grayscale im-
age.

(b) Dahu in the color im-
age.

Figure 4: The Dahu pseudo-distance in the grayscale
image and in the color image.
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Figure 5: Extension of the Dahu pseudo-distance: the Dahu pseudo-distance is combined with the geodesic
distance.

(a) ECSSD

Method MAE Fβ
max EMD

Color 0.21 0.69 0.29
Gray 0.22 0.6 0.33

R 0.22 0.62 0.34

G 0.22 0.6 0.33
B 0.23 0.62 0.35

Combination 0.22 0.62 0.33

(b) DUTOMRON

Method MAE Fβ
max EMD

Color 0.17 0.57 0.41
Gray 0.18 0.50 0.43

R 0.18 0.52 0.45

G 0.18 0.50 0.43
B 0.19 0.52 0.45

Combination 0.18 0.52 0.43

(c) PASCAL

Method MAE Fβ
max EMD

Color 0.22 0.69 0.28
Gray 0.24 0.63 0.3

R 0.23 0.65 0.31

G 0.23 0.64 0.3
B 0.24 0.65 0.31

Combination 0.23 0.65 0.3

(d) MSRA

Method MAE Fβ
max EMD

Color 0.16 0.79 0.17
Gray 0.19 0.72 0.21

R 0.18 0.75 0.22

G 0.18 0.73 0.21
B 0.18 0.74 0.21

Combination 0.18 0.75 0.23

Table 1: Comparison between saliency maps obtained using the vectorial Dahu pseudo-distance and using
the Dahu pseudo-distance on separate channels using MAE, Fβ

max measure and EMD score. “Color” is
the color saliency map computed using our vectorial Dahu pseudo-distance applied directly on color image,
“Gray” is the saliency map deduced from the Dahu pseudo-distance computed on the grayscale image, R, G
and B are the saliency maps deduced from the Dahu pseudo-distance computed on each channel separately
and “Combination” is the saliency map obtained by averaging the three saliency maps R, G and B. The
best result is highlighted in bold and the worst is underlined. The three different measures show that our
vectorial Dahu pseudo-distance leads to a much better saliency map.

(a) ECSSD

Method MAE Fβ
max EMD

Dahu 0.21 0.73 0.228

Fast-MBD 0.22 0.74 0.21
MST-MBD 0.22 0.73 0.227

Waterflow 0.22 0.74 0.205

(b) DUTOMRON

Method MAE Fβ
max EMD

Dahu 0.17 0.634 0.316

Fast-MBD 0.21 0.626 0.324
MST-MBD 0.21 0.606 0.344

Waterflow 0.21 0.634 0.316

(c) PASCAL

Method MAE Fβ
max EMD

Dahu 0.22 0.72 0.23

Fast-MBD 0.24 0.73 0.22
MST-MBD 0.24 0.72 0.23

Waterflow 0.24 0.73 0.22

(d) MSRA

Method MAE Fβ
max EMD

Dahu 0.17 0.815 0.14

Fast-MBD 0.18 0.821 0.135
MST-MBD 0.18 0.812 0.143

Waterflow 0.18 0.824 0.132

Table 2: Numerical comparison of saliency maps deduced from the vectorial Dahu pseudo-distance applied
on color images and different MB-based distances adapted to manage color images. The comparison is
performed using Fβ measure and EMD score. Best scores are in bold. Results of all methods are comparable
and variations among them are negligible.
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(a) PR (b) Fβ-measure (c) Percentage

Figure 6: Comparison between saliency maps obtained using the vectorial Dahu pseudo-distance and using
the Dahu pseudo-distance on separate channels. From top to bottom: the four datasets (MSRA-10K,
DUTOMRON, ECSSD, PASCAL-S). From left to right: the three evaluation metrics: (a) Precision-recall
curves, (b) Fβ-measure, (c) Percentage curves. “Color” is the color saliency map computed using our
vectorial Dahu pseudo-distance applied directly on color image, “Gray” is the saliency map obtained using
the Dahu pseudo-distance computed on the grayscale image and “Combination” is the saliency map obtained
by averaging saliency maps computed on separate red, green and blue channels. The three different measures
show that our vectorial Dahu pseudo-distance leads to a much better saliency map.
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(a) Input (b) GT (c) vivo (d) viso (e) Gray (f) Red (g) Green (h) Blue (i) Combi-
nation

Figure 7: Several saliency maps of the vectorial Dahu pseudo-distance on color images and the Dahu pseudo-
distance on separate channels. Note that image (c) and (d) are respectively the vivo and viso Dahu pseudo-
distances on the color image. The Dahu pseudo-distance on the color image highlights the object over the
background, whereas, when only one channel is used, the saliency map only spots a part of the object.
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(a) Input (b) Gray

(c) siso center (d) viso center

(e) vivo center

Figure 8: The saliency map deduced from the Dahu
pseudo-distances when the seed point is placed in the
center of the image. (a) the color image; (b) the cor-
responding grayscale image; (c) the “siso” saliency
map deduced from Dahu pseudo-distance; (d) the
“viso” and (e) vivo saliency map deduced from the
vectorial Dahu pseudo-distance.

Table 3: A comparison of ratio of inter- and intra-
distances between the Dahu pseudo-distance and
other MB-based methods.

Dataset MST-MBD Waterflow-MBD Dahu

ECSSD 1.28 1.36 1.404
PASCALS 1.324 1.398 1.448

DUTOMRON 1.341 1.432 1.483
MRSA 1.784 1.997 1.992
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(a) Input (b) GT (c) viso Dahu (d) Fast-MBD (e) Waterflow-
MBD

(f) MST-MBD

Figure 9: Comparison on color images of saliency maps deduced from our vectorial Dahu pseudo-distance
on color images with saliency maps deduced from state-of-the-art methods.
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Figure 10: An example image to investigate noise
stability of the Dahu pseudo-distance and MB-based
distance. The points p1 and p2 belong to the back-
ground, when p3 is inside the object (this picture
comes from the MSRA dataset (see [11])).
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(b) Intra-distance

Figure 11: Stability of the inter- and intra-distances
using the vectorial Dahu pseudo-distance or other
MB-based methods against Gaussian noise.

102 103 104 105

Number of distances

101

102

103

104

105

Ti
m

e 
(m

s)

Dahu-color
MST
Waterflow
Dahu-gray

Figure 12: Execution time (in milliseconds) to com-
pute numerous distances between two points using
the (pseudo-)distances presented in this paper.
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Figure 13: Shortest path finding in images. The input images and the end points (depicted in red) of the path
we want to find are shown on each picture. Results are given for Dahu pseudo-distance, Waterflow-MBD
and MST-MBD. Images are extracted from [18] and from [40].

Figure 14: A scheme for object segmentation on multimodal/multispectral images.
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(a) T1 (b) T2-FLAIR (c) Distance map (d) Segmentation (e) GT

Figure 15: White matter segmentation using the vectorial Dahu pseudo-distance. Images are taken from [31].
As we can observe on the segmentations (see Subfigures (d)) and on the ground truths (see Subfigures (e)),
the white matter has been well segmented thanks to the vectorial Dahu pseudo-distance.

(a) C1 (b) C2 (c) C3 (d) C4 (e) C5 (f) GT

(g) Distance
map

(h) Segmenta-
tion

(i) Distance
map

(j) Segmenta-
tion

(k) Distance
map

(l) Segmenta-
tion

Figure 16: Object segmentation on multispectral images. Objects are manually selected with a marker (in
red in pictures). Images C1-C5 are extracted by using a principal component analysis (PCA) algorithm.
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