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2Université Pierre et Marie Curie, Laboratoire d’Informatique de Paris 6,

4 place Jussieu, Paris 75252 Cedex

Abstract

We present a new algorithm for motion compensation that uses a motion es-
timation method based on tangent distance. The method is compared with a
Block-Matching based approach in various common situations. Whereas Block-
Matching algorithms usually only predict positions of blocks over time, our
method also predicts the evolution of pixels into these blocks. The prediction
error is then drastically decreased. The method is implemented into the Theora
codec proving that this algorithm improves the video codec performances.
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1. Introduction

Video compression refers to reducing the quantity of data used to represent
video images. A video is a sequence of frames (or images) that are related along
the temporal and spatial dimensions: two consecutive frames might be similar,
and the only observed changes are supposed to be due either to the displace-
ments of objects or the camera, to the changes of illumination, or to the noise.
In order to reduce the amount of data in image sequences to be transmitted, it is
then necessary to determine the spatio-temporal redundancies and to exploit it
by defining predictable properties. Considering the data to encode, these prop-
erties are used to make predictions, and only the errors between original and
predicted data are sent. This technique by itself does not reduce the amount
of data (for video compression, we transmit an image of errors, that contains
as many pixels as the original image), but, combined with a statistical entropy
coding, reduces the data size. In fact, these errors have smaller dynamics than
the original pixel values, giving a smaller entropy, resulting in a diminution of
the number of bits necessary to encode data.

We distinguish two main prediction types: the temporal prediction and the
spatial one.
Spatial, or intraframe prediction, only uses the current frame information: pix-
els of the frame buffer, sorted into their raster order, are supposed to be similar.
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By only considering pixels previously examined (and thus already coded) in a
specific neighborhood, the coder predicts the value of the current pixel. The
main difficulty in such approaches is the choice of weighting coefficients for the
pixels in the neighborhood. Usually, spatial prediction is adapted to the image
content (edges, area, etc.). Among the large number of existing spatial pre-
dictors, a well known one is the Median Adaptive Predictor (MAP) [24]. MAP
selectively uses three linear predictors based on a simple function of surrounding
values and gives a good prediction even in the presence of edge features. This
predictor has been embedded into the LOCO-I algorithm [37]. Spatial predic-
tion is used in numerous codecs in the spatial domain (H.264/AVC [38, 30]) or
in the frequency domain (Theora Codec [8]).
Temporal prediction, also called interframe prediction, uses earlier or/and later
frames in the sequence to predict the current frame. Considering a pixel in the
current frame, its neighbor pixels in the next and previous frames are assumed
to be similar. Motion estimation can be used to eliminate temporal redundan-
cies between frames in a video sequence [9]. Two kinds of motion estimation
approaches are used to perform the prediction: (i) in an unidirectional way
(front or back), without taking into account occlusion, appearance or disap-
pearance problems; or (ii) in a bidirectional way, by using both backward and
forward information in the sequence. This paper focuses on the issue of temporal
prediction.

Block-Matching (BM) algorithms are commonly used for motion estimation
in most of MPEG [19] implementations as well as in many other encoders.
The idea consists, for a given frame, in partitioning the image domain into
non overlapping blocks (generally square blocks), and then, for each block, in
searching in a reference frame the most similar region over an area near the
position of the block. The more similar the regions, the lower the prediction
error. A similarity criterion is usually defined as either mean square difference,
or mean absolute difference. There are lots of BM algorithms in the literature:
surveys can be found in [13, 5, 39], and an interesting empirical comparative
study in [20]. Recent works mainly concern the diminution of BM complexity.
This is often done by using a specific search technique, such as the most powerful
one, called the diamond search [40], or by using an adaptive modeling of blocks.
We can also adopt a coarse-to-fine strategy, such as the multi-level approach
proposed in [11], where outliers areas are progressively eliminated. In [27],
the authors propose to use patterns for motion vector estimation whose size is
adapted depending on the context. In [6] a geometry-adaptive block partitioning
is used, and a very recent improved version is proposed in [12] that only seeks
for a limited number of partitions.

The mesh-based motion model, also called grid wrapping, provides improved
interpolation accuracy compared with block-based motion models when the mo-
tion field varies smoothly in the spatial domain. The variation of the mesh
topology as well as the strategy for coding the synthesis error are defined by
an optimization technique following the rate-distortion criterion. The motion is
generally modeled by the displacements of the mesh nodes, so that the amount
of motion information to be transmitted remains small [2, 35]. In [18] the use of
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a mesh-based motion compensated interpolation is shown to give better results
than a simple BM. Active meshes [26] can also efficiently represent and code
the various regions of the scene and the motion information are also used in
temporal prediction. However, they often fail at solving the problem of motion
discontinuities (in particular the cases of small objects or occlusions). Recent
works try to overcome this problem by refining, as a post-processing step, the
mesh node positions when their surrounding patches contain motion edges [15].
In [28], the authors design specific interpolation kernels for mesh-based motion
estimation that permit to integrate BM motion vectors into a mesh. In [4] node-
point motion vectors of a triangular mesh-based model are estimated using a
hierarchical hexagonal refinement algorithm.

Other kinds of approaches used for motion estimation are gradient-based op-
tical flow methods [14]. As they provide a dense vector field which is inefficient
for the video compression issue, it is then necessary to reduce the velocity field
size and to consider a parametric velocity model, generally chosen constant [21]
or affine [3]. The optical flow estimation is then reduced to an over-constrained
linear problem that can easily be computed using Least Square method for
instance. Parametric optical flow has been successfully applied to video com-
pression [16, 1]. Optical flow as well as BM methods make the hypothesis
of a luminance constancy between two consecutive frames, that is, in general,
not true in video sequences. To be robust to luminance changes, an adequate
luminance model, i.e. a model describing the luminance evolution between two
consecutive frames, must then be defined. For example, supposing a constant
variation, or an affine one, significantly improves the prediction accuracy and
then the compression bit rate. The luminance model can be global [17] over the
image domain or locally defined for each block [36, 31]. If robustness to lumi-
nance changes has been earlier introduced for the determination of the optical
flow [29], it was coupled to BM methods only for the issue of video compres-
sion [36, 17, 31].

We have previously proposed in [7] a new motion estimation technique. The
purpose of this article is to prove that this contribution improves the motion
compensation step if included into a compression scheme: we offer a new ap-
proach for motion compensation using a temporal predictor. We revisit the
BM algorithm and change the way blocks are matched: we substitute the clas-
sic mean square or absolute difference for the tangent distance. Classical BM
algorithms only predict block positions over time. By the use of the tangent
distance, we not only estimate block positions over time, but also the affine
evolution of pixels into these blocks. We demonstrate that tangent distance is
equivalent to an affine parametric optical flow method: our method then takes
advantages of both approaches (BM algorithm and optical flow). It is also the
opportunity to theoretically introduce a luminance model in tangent distance
that is robust to local and constant luminance changes.

The organization of the article is as follows. In Section 2, we present video
compression by motion compensation using the tangent distance approach. Af-
ter introducing the tangent distance concept, we show how it can be embedded
into a motion compensation framework, justify our choices and show links with
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other approaches. We then expose the encoding and decoding schemes. Quali-
tative and quantitative results are given in Section 3. First, Sections 3.1 and 3.2
specifically focus on the motion compensation step. The prediction robustness
is also evaluated in Section 3.3. Then, a complete compression scheme is pre-
sented in Section 3.4: we have embedded our method and BM into Theora codec,
and compared the coding performances of these two approaches on eight stan-
dard video sequences. Concluding remarks and perspectives are finally given in
Section 4.

2. Video compression by motion compensation using tangent distance

Motion compensation is split into two main parts: an encoding and a decod-
ing step. During the encoding step, the motion is roughly estimated between the
frame to encode, also called current frame, and a reference frame (or more). A
current frame is predicted using the estimated motion and the reference frame.
Instead of recording the current frame, the estimated motion and the reference
frame are encoded. As this estimation is not perfect, errors between the current
frame and its prediction are also encoded. BM algorithms are well-known to
estimate this motion. In such approaches, the current frame to encode is par-
titioned into non overlapping blocks and, for each block b, we seek for its more
similar region b′ in the reference frame, around the position of the original block
b: a displacement vector is then estimated for each block.

During the decoding step, the frame is decoded by predicting blocks b using
displacement vectors computed during the encoding step and blocks b′ of ref-
erence frame. This gives a predicted frame, that is refined using the encoded
error.

As we can see, this motion compensation approach is performed by only con-
sidering block translations, that are obviously approximations of the real motion
in most cases. We propose to enhance predictions by estimating other trans-
formations such as affine transformations of pixel patterns or local changes of
brightness of patterns. We substitute the standard BM criterion for the tangent
distance one. We show this new criterion is equivalent to an affine optical flow
constraint method, robust to illumination changes. Thus, the predictor mod-
els both block translations and affine transformations inside these blocks. This
provides a better prediction and then decreases errors. This predictor is then
built using the tangent distance paradigm as described in the next subsection.

2.1. Tangent Distance

The tangent distance allows two patterns (i.e regions of an image) to be
compared according to small transformations. Introduced by Simard [34] in the
early 90’s, it has been used for multiple classification tasks, mainly for character
recognition [33, 32], but also for face detection or recognition [23] and for speech
recognition [22].

Let I : Ω→ R be an image, and s a mapping on I. Mapping s is supposed to
be parametric and differentiable with respect to its parameters that are denoted
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θ =
(
θ1 · · · θq

)T ∈ Θ ⊂ Rq. The mapping s is also supposed to be identity

if θ = ~0, i.e. if we have:
s(I,~0) = I (1)

The comparison of two images is equivalent to the search of the best mapping
between them, and then of the optimal configuration for θ. Given an image
I, the manifold Is = {s(I, θ) | θ ∈ Θ} is built and the comparison between
images is achieved by computing the distance between their manifolds. As a
mapping between images is a non linear function with respect to θ, the problem
is approximated by a first order Taylor expansion around θ = ~0:

s(I, θ) ' s(I,~0) +
∂s

∂θ
(I,~0)T θ (2)

with ∂s
∂θ =

(
∂s
∂θ1

· · · ∂s
∂θq

)T
. Let us denote LI = ∂s

∂θ (I,~0), that represents the

tangent plan to Is at point s(I,~0), whose components are called tangent vectors.
Using Eq. (1), Eq. (2) is rewritten as:

s(I, θ) ' I + LTI θ (3)

In the context of pattern recognition, a distance invariant with respect to a
class of transformations is required to efficiently compare two images or patterns.
In [33], the authors propose to use the Euclidean distance between the two
manifolds generated by the images to be compared:

d(I, J) = dist(Is, Js) = min
θI ,θJ

‖s(I, θI)− s(J, θJ)‖ (4)

It is clear that d is null if J ∈ Is or if I ∈ Js and then invariant to the trans-
formations modeled by s. However, such a distance is very difficult to compute
due to its non linearity, that is why it is approximated using Eq. (3) by:

d(I, J) ' min
θI ,θJ

‖I + LIθI − J − LJθJ‖ (5)

As we compute a distance between two tangent plans, d is called tangent dis-
tance. The computation of d then corresponds to a linear regression. A unique

solution may be computed by solving ∂‖I+LIθI−J−LJθJ‖2
∂θi

= 0 with j ∈ {I, J},
leading to the invertible linear system:

(LJIL
−1
II LIJ − LJJ)θJ = (LJ − LJIL−1II LI)(J − I) (6)

(LII − LIJL−1JJLJI)θI = (LI − LIJL−1JJLJ)(J − I) (7)

with Lij = LiL
T
j , (i, j) ∈ {I, J}. All matrices are q × q. In practice, q is lower

than 10. So the computation of d is direct and fast.
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2.2. Choices for s

The transformation s is chosen as s(I, θ)(x) = I◦t(x, θ), where t : Ω×Θ→ Ω
is a parametric mapping. To respect condition (1), t has to verify t(x,~0) = x ,
∀x ∈ Ω. The differential of s at θ = ~0, or tangent plan, is then:

LI =
∂t

∂θ
(x,~0)T∇I(x) (8)

where∇I(x) =
(
Ix(x) Iy(x)

)T
is the gradient of I and Ix the partial derivative

w.r.t. x and x = (x, y). For example, considering the class of rigid transforma-
tions (translation and rotation), we have:

t(x, θ) =

(
(x− a) cosα− (y − b) sinα
(x− a) sinα+ (y − b) cosα

)
(9)

with θ = (a, b, α)T and we then have:

∂t

∂θ
(x,~0) =



−1 0
0 −1
−y x


 (10)

We finally get for rigid transformations LI =
(
−Ix −Iy −yIx + xIy

)T
. It

is also possible to model all affine transformations by adding the case of scale
changes. The choice of s will depend on the experimental context or on the
user’s choices.

In addition to rigid transformations, we consider the constant changes of
brightness which frequently occurs between the acquisition of two successive
frames. This transformation is defined by s(I, g) : x 7→ I(x)+g and, in this case,
we have LI = 1. If we consider the class of rigid transformations and constant
change of brightness, the function s would be: s(I, θ, g) : x 7→ I ◦ t(x, θ) + g and

the tangent plan is given by LI =
(
−Ix −Iy −yIx + xIy 1

)T
.

2.3. Link with other works

In fact, the linear system defined by Eq. (6) and (7) is over-constrained as
it can be rewritten as:

LI(I + LTI θI − J − LTJ θJ) = ~0

−LJ(I + LTI θI − J − LTJ θJ) = ~0

We can also exhibit other solutions for this system. For instance, by choosing
θJ = ~0 and considering LI(I − J + LTI θI) = 0 or equivalently:

θI = L−1II LI(I − J) (11)

This means that we consider the distance between the image J and the manifold
Is. The matrix LII is symmetric, positive-definite and then invertible. It is well
known that Eq. (11) is the solution of the linear regression problem:

argmin
θ
‖J − I − LTI θ‖2 (12)
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If we consider s as a translation of I, i.e. s(I, θ)(x, y) = I(x+ a, y+ b), we have
J − I−LTI θ = J − I+aIx+ bIy and Eq. (12) then leads to the method of Lucas
et al [21], initially proposed for image registration purposes. If affine transfor-
mations are considered, Eq. (12) is equivalent to the work proposed in [3] to
compute optical flow. Actually, tangent distance gives a geometric interpreta-
tion of these methods that consider the problem from an error minimization
point of view.

2.4. Encoding

During the encoding step, we have to find, for all blocks in the current
frame, their corresponding region in the reference frame. As we said before,
the tangent distant can be used to compare efficiently two patterns I and J .
During this step, these two patterns are known: J is the block to predict in the
current frame and I is a candidate in the reference frame (the two frames are
known during encoding). Tangent vectors LI are obtained from I using Eq. (8).
Eq. (11) is used to determine a distance between the candidate region I and the
block J to predict. By iterating on all candidates I, we select the distance that
best matches with J and then provide an estimation of θ. As J is known during
the encoding step but not during the decoding step, we use Eq. (11) instead
of Eq. (5). J is required to compute LJ during the decompression process.
The solution of Eq. (11) is trivial, simple and fast to compute, because it only
consists in a matrix inversion (pseudo-inverse). The encoding step is given in
Algorithm 1.

Algorithm 1 Encoding step

{Compute the prediction}
for all blocks b from current frame do
Smin ⇐ +∞
for all possible translations t do

Consider block b′ in the previous frame such as b′(x + t) = b(x)
Compute tangent vectors Lb′ of block b′

Compute Sb′ ⇐ minθ d(b′ + LTb′θ, b) using Eq. (11)
if Sb′ < Smin then
b′min ⇐ b′

Smin ⇐ Sb′

tmin ⇐ tb′
end if

end for
Record tmin and the value of θ that minimizes d(b′min + LTminθ, b)

end for
Compute and record prediction error

2.5. Decoding

During the decoding step, the predicted image is generated by combining
each block I from the reference frame with its associated transformation trans-
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lated by the displacement vector, both computed during encoding step. This
means that for each block J , the corresponding block I is given by its transla-
tion estimated during the encoding step. Tangent vectors LI are computed and
then, by using the recorded values of θ, the prediction I ′ of block J is given by:

I ′ = I + LTI θ (13)

The decoding step is described in Algorithm 2. This step is only based on the
computation of Eq. (13) and can be performed easily in real time.

Algorithm 2 Decoding step

{Generate the prediction}
for all blocks b from current frame do

Select block b′min from previous frame (using vector t computed during the
encoding step)
Compute tangent vectors Lmin of block b′min

Generate block b′′min, prediction of b, using θ computed and recorded during
the encoding step:
b′′min ⇐ b′min + LTminθ

end for
Correct the prediction error

In the next section we give experimental results to prove the efficiency of
our method in various common and complex situations. We compare our ap-
proach with a classic BM algorithm and prove that our method improves the
compression ratio.

3. Results

The proposed temporal predictor has been designed in order to provide bet-
ter quality results for motion estimation and lower prediction error rates than
a standard BM algorithm. Integrated into a complete compression scheme, our
tangent distance based motion compensation algorithm should then decrease
the size needed to record the prediction error. Compression ratio should also
be improved but, to decode an image, all parameters θ are required and must
be recorded in the encoded stream: it is then important to take into account
the size of parameters required for the decoding step to argue if our approach
gives or not better compression ratio. In Subsections 3.1 and 3.2, a theoretical
study, based on entropy and focused on the motion compensation step, is first
performed. Robustness is then studied in Subsection 3.3. In Subsection 3.4, the
both methods are integrated into a real codec, and an experimental study on
resulting bit rate and prediction qualities is then performed.

In this section, BM refers to a standard Block-Matching method using mean
absolute difference as similarity criterion and TD refers to our tangent distance
method.
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3.1. Theoretical compression gain

The theoretical compression gain is measured using entropy, that is given,
for an image I quantized into n levels, by:

H(I) = −
n∑

i=1

pi log2 (pi) (14)

where pi , i = 1, . . . , n, is the probability for the ith quantized level to be
used (given by the normalized histogram of the pixel intensities). The entropy
evaluates the mean size of an image I composed of s pixels: s×H(I) bits.

To measure the theoretical compression gain, we then consider two successive
frames in a sequence, predict the second frame from the first one and compare
the entropies given by TD and by BM.

For these experiments and also for the two next subsections 3.2 and 3.3, the
block-matching is performed on 8 × 8 size blocks embedded into 23 × 23 size
search windows. That means 16 × 16 = 256 translations are possible consid-
ering a 1-pixel precision. Three transformations are modeled in our approach:
horizontal and vertical stretches and a constant change of illumination. Other
affine transformations could also be modeled (rotations, translations) but im-
plying more information to store. Note that modeling translation in tangent
distance, combined with block translations, permits to reach a sub-pixel preci-
sion. For their recording, θ component values are rounded to the nearest 0.1.

Experiments are made on Robot sequence. Each frame of this sequence (see
frames 0, 1 and 12 in Figure 1) is a 512 × 480 (245760 bytes) gray-level image
(1 byte per pixel). This sequence, displaying a zoom, is challenging for the
image prediction issue because some of the objects disappear (see for example
the barrel on the left, Figure 1). Considering the first frame (Figure 1.(A)) we
predict the next one (Figure 1.(B)). The predicted frames given by BM and by
TD are shown in Figure 2. Both approaches provide good quality predictions,
but artifacts appear on some boundaries and particularly on the top of the
barrel on the image predicted by BM (Figure 2.(A)). Figure 3 shows histogram
differences between the current frame and its prediction (e.g. histograms of
prediction error image) computed by the two methods. We also show the result
if the motion compensation step is removed i.e. if we only encode the frame
difference (this is named “Frame difference prediction” in the following tables
and figures). Most values of prediction errors given by our method are close
to 0, showing we get a high statistical redundancy. A statistical study of these
histograms is given in Table 1. If we compare with the results given by BM,
we expect our algorithm could give better compression gains because it reduces
the quantity of information to store (this will be proved in Section 3.4).

Table 2 gives estimations of the quality of the prediction. We see TD de-
creases the Mean Square Error (MSE) computed between the frame and its
prediction and entropy values computed on the predicted frame, compared to
BM results. The theoretical size needed to store prediction errors is 102319
bytes. θ values must also be stored, adding 4921 bytes. This gives 107240 bytes
while BM needs 160160 bytes (all these estimations are theoretical and based on
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(A) (B)

(C)

Figure 1: Robot sequence. (A) Image 0, (B) Image 1 and (C) Image 12 (note that a part of
the image disappears, in particular the barrel on the left).

Table 1: Robot sequence. Comparisons of histograms of prediction errors computed between
the frame and its prediction: using the previous frame as predictor (Frame difference), a
BM-based predictor and a TD-based predictor. µ is the mean value of the histogram, σ its
standard deviation

Predictor Range number of symbols µ σ number of zeros

Frame difference [−254, 188] 404 0.04 22.97 7866
BM [−199, 90] 250 −0.64 12.05 21689
TD [−88, 70] 125 0 3.75 67292

entropy for both prediction errors and θ values). Note that, as block displace-
ment vectors are equivalent for both algorithms, their size are not taken into
account in this computation (having 256 possible positions for a 8 × 8 block,
this will then not add more than 1 byte per block).

Table 2: Robot sequence. Comparison between qualities of prediction for three predictors.
Our method divides by 10 the MSE.

Predictor MSE Entropy Theoretical size (bits)

Frame difference 527.7 6.15 1511213
BM 145.5 5.21 1281287
TD 14.1 3.33 818557
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(A)

(B)

Figure 2: Robot sequence. Prediction of image of Figure 1.(B) from image of Figure 1.(A). (A)
Using BM, the prediction is correct but some artifacts appear. (B) Using TD, the prediction
is better.

The improvement is then significant and the compression gain is important
(≈ 33%) with our approach on this sequence.

3.2. Prediction quality

We have compared the quality of prediction obtained with both motion
estimation methods on Foreman video sequence. The goal of this test is to show
the improvement provided by our method in term of motion estimation quality.
To this end, each image (except the first one) of the sequence is predicted using
the previous predicted one and the prediction error is dropped. The evolution
of the Peak Signal-to-Noise Ratio (PSNR) computed between each frame and
its prediction can be seen in Figure 4. Note that the PSNR computed for TD is
always higher than the BM’s one. The reason is simple: in the worst case, values
of θ equal 0 and the result of TD and BM are similar. On this sequence, both
predictors provide similar performances, except in cases of important variations
between frames: BM rapidly decreases its accuracy contrary to TD (see for
example between frames 62 and 63, Figures 5.(A-B), when the man suddenly
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Figure 3: Robot sequence. Histograms of prediction errors: (A) frame difference prediction,
(B) with a BM-based predictor, and (C) with a TD-based predictor.

opens his mouth). The PSNR of BM decreases from 33 dB to 28 dB while the
PSNR of TD stays up to 33 dB. The predicted frame given by both approaches
for this particular case can be seen in Figures 5.(C-D).

3.3. Prediction Robustness

In this section, we evaluate the robustness of predictions, by considering
various conditions and studying the predictions given by BM and by our ap-
proach. We have then generated our own sequences, containing frames of size
704 × 528, to consider specific conditions and to highlight the abilities of our
approach. Assuming a coordinate space with horizontal along the x-axis, ver-
tical along the y-axis and optical axis along the z-axis, we compare BM and
TD in following situations: the case of moving objects and the special case of a
transparent moving object (Section 3.3.1), the case of a deformable object (Sec-
tion 3.3.2), the cases of rotation of the camera around the x-axis (Section 3.3.3)
and around the y-axis (Section 3.3.4), and finally two cases of large deforma-
tions (Section 3.3.5). Note that the case of zoom transformation has already
been treated in Section 3.1.

3.3.1. Moving objects and transparent objects

We consider two consecutive frames of a sequence showing objects moving
independently (Figure 6.(A-B)) and predict the second frame using the first
one. Figure 6.(C-D) shows the prediction obtained with both approaches: we
can see the one given by our algorithm are better. BM fails in many ways
(see Figure 6.(E) for details): scissors are noisy, pencil is rounded whereas our
algorithm gives a visually correct prediction. These results also show that our
algorithm deals with transparent objects as it correctly predicts the ruler while
BM tries to predict transparent foreground and background, and provides a
double blur image (Figure 6.(E)). Table 3 gives quantitative measures of this
comparison: the best quality is obtained with our method that significantly
reduces the MSE.
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Figure 4: Foreman sequence. Evolution of the PSNR values (in dB) for successive predictions.
BM (dotted pink line) and TD (plain red line) both give good predictions. However, in case of
strong changes between two consecutive frames (like between frames 62 et 63, see Figures 5.(A-
B)), our algorithm is more robust.

3.3.2. Deformable objects

The motion of a deformable object is very difficult to predict in a sequence.
To evaluate the efficiency of our method on deformable structures, we have
tested the case of a moving and deforming hand (Figure 7.(A-B)). The predicted
images are given in Table 4. In Figure 7.(C-D), we see TD correctly handles
deformable objects while BM can not.

3.3.3. Rotation along the x-axis

This experiment is concerned by the case of a camera rotating along the
x-axis. The two considered frames are shown in Figure 8.(A-B) and their pre-

Table 3: Moving objects and a special case of transparent object. Comparison of quality of
prediction between Frame difference, BM and TD approaches. The MSE is divided by more
than 2 using our method.

Predictor MSE entropy theoretical size (bits)

Frame difference 247.4 5.5 2054323
BM 50.6 4.4 1634224
TD 22.1 4.0 1478496
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(A) (B)

(C) (D)

Figure 5: Foreman sequence. Frames 62 (A) and 63 (B): the man suddenly opens his mouth.
Predictions of frame 63 using BM (C), and using TD (D). Only TD correctly handles the
movement: the mouth and the bottom of the hat are very noisy with BM.

dictions in Figure 8.(C-D). We see in Figure 9 that our algorithm gives clearly
the best result: BM fails on the checker floor and artifacts appear on the barrier.
Qualities of both predictions are given in Table 5. Our method divides MSE by
nearly 5 comparing to the one obtained with BM.

3.3.4. Translation along the y-axis

This case is certainly the simplest one and, as expected, the two algorithms
succeed. However our algorithm still gives the best result (see Table 6) as the
MSE is divided by 2.

Table 4: Deformable object (a hand). Comparison of quality of prediction for a deformable
object between Frame difference, BM and TD approaches. The MSE is divided by more than
10 with our method. Note that the resolution of the image is 1350 × 1072.

Predictor MSE entropy theoretical size (bits)

Frame difference 269.1 5.2 7480553
BM 102.2 4.4 6355108
TD 8.6 3.2 4666871
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(A) (B)

(C) (D)

(E)

Figure 6: Moving objects and a special case of transparent object (the ruler). (A-B) Two
consecutive frames. (C) Prediction using BM. (D) Prediction using TD. (E) More details for
comparison between predictions given by BM (left column) and TD (right column): many
artifacts appear with BM (scissors are noisy, pencil is rounded) while TD is visually correct.
Our algorithm can also deal with transparent objects: the ruler is correctly predicted with
our approach while BM predicts two superposed rulers.

3.3.5. Cases of large deformations

The robustness of both approaches have been checked by increasing the
time between the two considered frames on Robot sequence: we try to predict
image 12 (Figure 1.(C)) from image 0 (Figure 1.(A)). This is a difficult situation
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(A) (B)

(C) (D)

Figure 7: Deformable object (a hand). (A) and (B) Two consecutive frames of the sequence.
(C) Prediction using BM. (D) Prediction using TD. Fingers are noisy and deformed with BM
approach but not with our method.

Table 5: Rotation along the x-axis of the camera: comparison of prediction quality.

Predictor MSE entropy theoretical size (bits)

Frame difference 779.1 6.4 2377104
BM 190.2 5.4 2003655
TD 42.8 4.6 1697992

because the barrel on the left disappears between these two frames and the size
of the robot increases. Figure 10 shows the obtained predictions. While TD
provides a correct prediction, BM algorithm completely fails: the barrel is still
visible and the image prediction is noisy. Data on Table 7 quantifies the quality
of the predictions and shows the robustness of our method.

We have also performed a test in extreme conditions. We have taken two
images totally different, and tried to predict one from the other. The initial
image is displayed in Figure 9.(A) and as final one in Figure 6.(A). Figure 11
shows prediction results and Table 8 gives quantitative results. Even in such
extreme conditions, our algorithm provides good predictions. It is important
to understand the meaning of this test. For the motion estimation issue, it
is crucial to match the best possible corresponding blocks over time, and bad
associations are mistakes. For the compression issue using motion compensation
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(A) (B)

(C) (D)

Figure 8: Rotation of the camera of the camera around x-axis. (A-B) Two consecutive frames.
Prediction of frame (B): (C) using BM, and (D) using TD.

Table 6: Rotation along the y-axis of the camera: comparison of prediction quality given by
Frame difference, BM and our approach.

Predictor MSE entropy theoretical size (bits)

Frame difference 773 5.2 1935827
BM 19 3.3 1225064
TD 9.1 2.8 857932

we just need to find the block associations minimizing the errors (and then the
encoding size) but do not need perfect associations. During this complex test,
the two images are different and it is not possible to perfectly match blocks
between them. The proposed method generates a good prediction as it finds
similar blocks and predicts a block with its not so similar matched block. This
situation arises, for example, when a sequence is encoded with intra-frames
introduced regularly (as in Section 3.4). This means that we could have a
major change between images without necessarily needing a new golden frame.
It happens, for example, between frames 97 and 98 of Tennis sequence because
the point of view of the camera changes (see first line of Figure 12). If we
compare predictions of frame 98 with BM-based motion compensation and with
TD-based motion compensation, the difference is huge (Figure 12, bottom line).
With the implementation in Theora codec of both prediction algorithms (see
subsection 3.4), the size of the image predicted using BM algorithm is 58111
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Figure 9: Rotation of the camera around x-axis: many artifacts appear with BM (left) while
TD (right) is visually correct.

(A) (B)

Figure 10: Prediction of image Figure 1.(C) from image Figure 1.(A). (A) With BM, the
quality of the predicted image is very poor, and very different from the real one. (B) With
TD, the quality is acceptable (notice the barrel on left disappears).

Figure 11: Prediction of image in Figure 6.(A) using image of Figure 9.(A). Prediction using
BM (left): the image is unusable, and using TD (right): the quality of the prediction is
acceptable.
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Table 7: Study of robustness: comparison of prediction quality.

Predictor MSE entropy theoretical size (bits)

Frame difference 4919.5 8.0 1966139
BM 3094 7.5 1847711
TD 189.5 5.1 1243822

Table 8: Prediction of an image using a totally different one: comparison of prediction quality.

Predictor MSE entropy theoretical size (bits)

Frame difference 2106 7.4 2751139
BM 1175 7 2599123
TD 82.4 5 1879420

bytes while it is 56955 bytes with TD (more than 1 Kb saved). DCT coefficients
of prediction error need 55671 bytes with BM algorithm while they need only
48114 bytes with TD.

Figure 12: Tennis sequence. Top: Frames 97 and 98 (the point of view of the camera changes).
Bottom: Predictions of frame 98 using Theora codecs with BM based motion compensation
(left) and with TD based motion compensation (right).

We conclude our approach well-performs BM and highly improves the quality
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of predictions in a lot of situations. This efficiency may lead to reduce the
number of reference frames needed in the video sequence. This is another way
to improve compression rate.

3.4. Compression gain into an operational codec

In Subsection 3.1, we have shown the proposed approach provides a signif-
icant theoretical compression gain. However, common codecs implement more
than a simple entropy coding in the spatial domain (use the frequency do-
main, quantization, RLE, etc) and this theoretical gain may not be reachable
in practice. To ensure our method provides an effective compression gain, an
implementation into a codec is then necessary and results must be quantified.
The purpose of this subsection is then to show our method is more robust than
a classic BM-based method, and to quantify this robustness in term of compres-
sion rate.

3.4.1. The codec: Theora

We have chosen the free Theora codec [8] supported by the Xiph.Org Foun-
dation1. This choice is motivated by the following reasons:

• it is free,

• it does not implement too much features (like all H.264/AVC features),
that permits to better quantify our motion compensation algorithm benefices,

• it becomes more and more popular. Numerous web browsers have a native
Theora decoder (as Theora was suggested for HTML 5 standard). Some
major websites (Wikipedia, etc.) or online video servers (Dailymotion,
etc.), provide their video content by the use of Theora.

Classically, Theora codec uses two kinds of frames: intra-frames (or golden
frames) and inter-frames. Intra-frames are directly recorded while inter-frames
are predicted from a reference frame and only the prediction error is recorded.
The color space is YUV and each channel is partitioned into non overlapping
8 × 8 blocks. A value in a channel has 1-byte size. Inter-frames are predicted
from a previous reference frame (forward prediction) which can be the last inter-
frame or the last intra-frame: the reference block is retrieved in the previous
frame from a block translation ranging up to (±15,±15) with an accuracy of 0.5
pixel. Note that H.264/AVC can perform forward or backward predictions while
Theora is restricted to forward predictions. The error between the predicted
frame and the current frame is stored and encoded in the same way than intra-
frames using a JPEG-like method (see Figure 13): a Discrete Cosine Transform
(DCT) is performed on each block and then quantized. The first DCT coefficient
(DC) is corrected by the prediction from DC of surrounding blocks. Finally
blocks are encoded using RLE and Huffman tables.

1http://www.xiph.org
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To decode a frame, the inverse principle is applied with an additional “de-
blocking filter” devoted to remove various undesirable effects induced by the
block encoding method.

Image
- DCT Quantization DC

Prediction
Entropy

Encoding

Inverse
Quantization

Inverse
DCT

Deblocking
Filter

Motion
Compensation

Motion
Estimation

+

Prediction

Reference frame 
(previous inter-frame or previous golden frame)

Inter-frame for prediction of next image

Motion vectors
Encoding

Figure 13: Theora inter-frame encoding.

We have implemented Theora codec (both encoder and decoder) according
to its specifications [8]. We have derived this implementation into two versions,
each one having its own motion estimation stage: the first one integrates a
BM-based predictor and the second one our TD-based predictor. The BM-
based predictor uses the mean absolute difference as criterion with an exhaustive
search. The codec parameters (Huffman table, block filter parameters, etc)
are taken from the VP3 codec [25, 8]. As we focus on motion, all blocks are
recorded using motion compensation. These two versions allow to make relevant
comparisons in the strictly same conditions.

3.4.2. Implementation of the TD-based predictor into the codec

To implement our method into the Theora codec, some strategic choices have
been made to store the motion parameters θ. Even if a good encoding strategy
is important, this is out of the scope of this article to discuss the optimal way
to store this information.

Non-zero values of θ (all θ values are rounded to the nearest 0.1) are recorded
as follows: the integer part is given by a static Huffman code, the decimal part
by another Huffman code and the sign is one bit coded. Sometimes our predictor
can provide a better compression gain than BM’s one, but not high enough to
allow a competitive storage of θ parameters. In such cases we set θ = 0, that
decreases the storage size. To store zero values of θ, we use a RLE encoder
(described in Section 7.8.1 of the specification of Theora [8]) that indicates
which of the coded blocks have θ values set to zero.
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We do not claim we made optimal choices and we think it could be improved
(for example, using an arithmetic coding or BZ2 algorithm). However, if we
succeed with this very simple code, this is reasonable to hope better results
with more sophisticated codes.

To decide if tangent distance parameters must be kept or set to zero, we
have to design a relevant criterion. A first idea could be to compare the entropy
of prediction errors obtained with the original θ values and with θ values set
to zero: if and only if the difference is big enough, we keep θ values. However,
this is not a good strategy, because the comparison is performed into the spatial
domain, while the encoding is performed into the frequency domain. In fact, a
given block might be similar to a block into the spatial domain, but closer to
another one in the frequency domain or generate a lower prediction error. It
is then impossible to predict the gain in the encoding size of the block by only
comparing blocks into the spatial domain because there is a lot of other factors
that influence the encoding size such as the quantization or the RLE encoding
of successive zeros.

The interest of using (or not) θ values for a specific block is evaluated by
comparing predicted blocks into the frequency domain after the quantization
step. Two parameters influence the compression gain, and then have to be
considered to compare predictions: the similarity between two quantized DCT
blocks and their number of zeros. We propose a three-term score associated to
the prediction and defined as follows.

The first term is related to the number Z of zeros contained in the 8 × 8
quantized prediction error block into the frequency domain. This term is then
defined by kZ(64−Z): a good prediction, with a lot of zeros, will then provide
a low score.

To penalize prediction errors with high amplitude values in the frequency
domain we add two other terms to the score. Let EDC be the absolute error
between the DC coefficient of a block and the one of the prediction. Let EAC

be the cumulative absolute error between the other DCT coefficients of a block
and the ones of the prediction. The score is:

S1 = kZ(64− Z) + kDCEDC + kACE
2
AC (15)

with kZ , kDC and kAC weighting coefficients.
This score is not fully satisfactory because the spatial domain is not taken

into account. We then add the parameter EIMA, corresponding to the absolute
error into the spatial domain. This gives a new score formulation:

S2 = S1 + kIMAE
2
IMA (16)

with kIMA a weighting coefficient.
To choose the block predicted either with TD, or with all θ set to 0, we also

add a parameter Nθ, corresponding to the number of θ values to encode, and
consider that adding one θ value is as penalizing as removing two zeros to the
block into the frequency domain. The score function finally becomes:

S3 = S2 +Nθ × 2kZ (17)
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If the TD predictor decreases the score S3, θ parameters are kept, otherwise
they are set to zero.

During our experimental tests, we have noticed that taking into account the
frequency domain (and not only the spatial domain) during the block compari-
son greatly improves the choice of the block as the prediction error is significantly
decreased. For this reason, S3 is used as criterion to select the final predicted
block using θ parameters computed by the TD motion compensation. S3 is then
used for both selecting the best matching block and deciding if the θ values are
kept.

3.4.3. Effective compression gain

In this subsection, we compare the efficiency of the first codec (with a BM-
based prediction algorithm) and of the second codec (with a TD-based predic-
tion method).

For the TD approach, we have modeled both horizontal and vertical trans-
lations and illumination changes. This means we have, for each block, three θ
values to encode. The score function is computed with kZ = 2, kDC = 0.1,
kAC = 4.44 × 10−5 and kIMA = 4.26 × 10−5 (empirically fixed). Experi-
ments are done on height well-known video sequences often used to test codecs:
Coastguard (352×288), Container (352×288), Football (352×240), Foreman
(352×288), Garden (352×240), Hall monitor (352×288), Mobile (352×240)
and Tennis (352× 240).

To evaluate the performances of TD and BM for several given bit rate values,
we compute the rate-distortion (RD) curves of each method and compare them
using the Bjontegaard’s metric [10]. The principle consists in computing the
PSNR and bit rate values for several qualities (Quantification Points - QP )
from which two RD-curves are interpolated: one for each approach to compare.
The difference of area ∆ between these curves corresponds to the Bjontegaard’s
metric. We then have computed PSNR and bit rate values for seven QP values:
QP = {0, 10, 20, 30, 40, 50, 60}, and the RD-curves for the eight video sequences
are shown in Figure 14. We define ∆SNR = ATD

SNR − ABM
SNR where ASNR is

the RD-curve area of SNR for a given method. Similarly, we define ∆BR =
ATD

BR − ABM
BR . This differences of PSNR values (∆SNR) and percentages of bit

rate reduction (∆BR) are presented in Table 9 for four intervals of QP : the
full interval [0− 60], the lowest quantification interval [0− 20], the medium one
[20− 40] and the highest one [40− 60].

As it can be computed from Table 9, the average performance of TD is
better than the one provided by BM: we get an average bit rate saving of 4.92 %
and an average increasing of the PSNR of 0.43 dB. In particular, our scheme
performs much better for Hall Monitor sequence, for which we get an average
bit rate saving of 11.29 % and an average increasing of the PSNR of 1.2 dB, or
Container sequence, for which we get an average bit rate saving of 11.76 % and
an average increasing of the PSNR of 1.39 dB.

Globally, our approach outperforms BM for lower quantification rates, reach-
ing an average rate saving of almost 10 % and an average increasing of the PSNR
of 1.3 dB. This is particularly significant for the complex sequences Foreman and
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Tennis that present high spatial details and large amount of movements. We
compute an average bit rate saving and a PSNR average increasing of respec-
tively 12.24 % and 1.23 dB for Foreman sequence and respectively 11.35 % and
0.86 dB for Tennis sequence.

However, we remark TD has similar performances on sequence Garden than
BM. This is probably due to the simple translation motion present in this se-
quence, that is still well handled by the default sub-pixelic predictor. Ou ap-
proach also gives just a little better results on Football and Mobile sequences.

Table 9: Comparison in terms of differences of PSNR (∆SNR, expressed in dB) and of bit
rate saving (∆BR, expressed in %) between TD and BM approaches, using Bjontegaard’s
metric [10], for eight video sequences. The computations were made for four intervals of
quantification points.

QP interval [0− 60] [0− 20] [20− 40] [40− 60]
∆SNR ∆BR ∆SNR ∆BR ∆SNR ∆BR ∆SNR ∆BR

Coastguard +0.11 -3.3 +0.61 -11.96 -0.06 +0.83 -0.07 +0.31
Container +1.39 -11.76 +3.89 -18.54 +1.48 -14.72 +0.36 -3.57
Football +0.03 -1.52 +0.14 -5.56 -0.08 +2.58 +0.05 -1.50
Foreman +0.30 -4.02 +1.23 -12.24 +0.03 -1.43 +0.07 -0.50
Garden +0.02 -0.57 +0.01 -0.89 +0.01 -0.05 +0.05 -0.70
Hall Monitor +1.20 -11.29 +3.64 -15.35 +0.74 -13.07 +0.45 -5.24
Mobile +0.11 -2.43 +0.10 -4.09 +0.08 -0.87 +0.17 -2.42
Tennis +0.28 -4.53 +0.86 -11.35 +0.20 -4.85 +0.06 -0.10

Mean +0.43 -4.92 +1.30 -9.99 +0.30 -3.94 +0.14 -1.71

3.4.4. Type and amount of data to transmit

We have seen our algorithm improves bit rate performances of Theora. In
this subsection, we now compare the amount of data necessary to be transmitted
to the decoder for both approaches using the experimental conditions described
in Subsection 3.4.3. In particular, we measure, for some video sequences, the bit
rates of the prediction error and of the motion vectors (for both approaches),
and also of the θ parameters (for our approach). Results are shown in Figures 15
and 16.

For Container and Hall Monitor sequences, our predictor greatly improves
the encoding of the sequence. Figure 15 clearly shows the amount of data
necessary to be transmitted is lower with TD than with BM (see “Whole image”
lines for BM, in black, versus TD, in red). On the contrary Figure 16 shows,
for Coastguard sequence, our predictor fails to improve prediction for the high
quality values. For Garden sequence, the amount of data necessary to transmit
is approximately the same for both approaches. Note that for very low qualities
the major information are much more carried by motion vectors and tangent
distance parameters than by the prediction error. Finally we remark the amount
of data needed to store tangent distance’s parameters plus the prediction error
is systematically lower (except for Coastguard sequence) than the amount of
data needed for BM.
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Figure 14: Rate-distortion curves for BM (red dashed lines) and TD (blue plain lines) algo-
rithms for eight standard video sequences.
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The average number of blocks per image predicted by TD with θ 6= 0 is
less than 3% over the eight tested sequences. This percentage depends on the
tested sequence but also on the quality. It does not exceed 10% and decreases
for medium qualities. However, on some frames, it can achieve 30 to 40% and
even 50%. The interpretation is rather simple: most of time, BM prediction
gives an acceptable result and DT prediction is only used if the prediction
becomes difficult. This confirms our interpretation of result obtained on Garden

sequence in Section 3.4.3. Obviously, a better score function and an adaptation
of modeled transformations to the image motion would probably increase these
percentages and the compression gain.

3.4.5. Conclusion about our codec implementation

Tests of Sections 3.4.3 and 3.4.4 show that our approach outperforms BM
both in compression gain and amount of data to transmit. In particular, we
note that TD highly increases compression gains in the lowest quality interval
(i.e. [0 − 20]) while significantly reducing the amount of data necessary to be
transmitted to the decoder (see for example results for Container and Hall

Monitor sequences).
Even if this bit rate is lower than the one evaluated theoretically (compared

to the simple framework of the previous section, all advanced treatments of the
codec shrink the difference between the size of the error prediction generated
by our method and the one generated by BM), the proposed method efficiently
enhances the Theora codec in real conditions. With such a coarse and naive
approach, these results are very encouraging: for all the sequences we have
tested, we used the same set of parameters. As we said before, the scope of
this paper is not to find an optimal set of parameters but only to prove this
algorithm is efficient and works well. Moreover tuning our algorithm, for each
tested sequence, until finding the perfect set of parameters would not have
permitted to honestly compare both methods.

However this is clear that these results could be greatly improved by consid-
ering the following points.

• For simplicity we model the same transformations in tangent distance
for all the sequences. A better selection (for instance depending on the
context) should improve results by adapting them to the situations that
occur (type of motions, etc).

• θ values are naively recorded: this encoding could be improved.

• The score function could take into account more parameters (number of
successive zeros, amplitude of motion vector, etc). Coefficients of this
score function should be adapted according to the expected quality.

Experiments presented in this subsection confirm that our approach signifi-
cantly improves the compression rate.
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Figure 15: Distribution of bit rate to transmit for Container and Hall Monitor sequences and
comparison between TD and BM. The figure gives, for a given PSNR value, the repartition
of encoded data between prediction error, motion vectors and TD parameters.

27



 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 22  24  26  28  30  32  34  36  38  40  42

 b
it
ra

te
 (

b
/s

) 

 PSNR (dB) 

garden

Prediction error (TD)
Motion vectors (TD)
TD parameters (TD)

Whole image (TD)
Prediction error (BM)
Motion vectors (BM)

Whole image (BM)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 30  32  34  36  38  40  42  44  46

 b
it
ra

te
 (

b
/s

) 

 PSNR (dB) 

coastguard

Prediction error (TD)
Motion vectors (TD)
TD parameters (TD)

Whole image (TD)
Prediction error (BM)
Motion vectors (BM)

Whole image (BM)

Figure 16: Distribution of bit rate to transmit for Garden and Coastguard sequences and
comparison between TD and BM.
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4. Conclusion

We have presented a new motion compensation algorithm based on the use of
tangent distance. Unlike many Block-Matching methods, the proposed method
not only handles the evolution of positions of blocks, but also the evolution of
pixels inside these blocks. The method is simple and very robust. We prove its
robustness using many tests (transparent objects, deformable objects, rotations,
translations, zoom, ...). Comparisons with a Block-Matching algorithm show
that our algorithm systematically improves the quality of the prediction. The
quality of the result depends on the transformation introduced into the tangent
distance model. Additionally to classic affine transformations we successfully
introduced a simple and efficient illumination transformation.

We have also implemented our method into the Theora codec. This was
the opportunity to discuss a criteria to match blocks during the motion com-
pensation step. This criteria not only takes into account the similarity into
the spatial domain, but also into the frequency domain. This gives a more ro-
bust score function used to measure the quality of the prediction of a block.
Tests performed on several standard video sequences prove the capability of our
method included into a codec in terms of compression rates.

An interesting work would be the possibility to choose the transformations
we want to model during the encoding step. This would permit to adapt trans-
formations to blocks and then to get optimal results. The scoring function could
also be improved by taking into account successive zeros and the norm of the
translation vector. Finally, this would be useful to define the best way to record
additional parameters necessary to the decoding of our prediction. With a naive
entropy coding and precomputed Huffman table, we already get good results.
We then think that with a better encoding scheme, our method could efficiently
improve common codecs.
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