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Abstract

The P1Cams (V1, V2 and now HQ) are interesting cameras as they are not expensive and provide RAW
data from the sensor. Recently, a new one has been released, the P1ICAM HQ, but the official documentation
does not provide any information on the internal format. This document, explains how to extract/interpret
RAW images with this new P1Cam HQ.

1 Introduction

The P1Cams (V1, V2 and now HQ) are interesting cameras, usable in a research context and not expensive. It
is possible to get RAW data from these cameras but it lacks some documentation to interpret data for the last
PiCaM HQ. This lack will certainly be filled very soon, but until this update, we propose to share my work to
help other people to make it work'. I expose in this document the few things you need to interpret the data.

Before starting, you can read The official raspberry pi camera guide [7] which provide a lot of precious
information. Details about PICAMS can be found here [1]. This P1ICAM HQ is based on the Sony IMX 477
CMOS sensor. You should have a look to its specification.

Configuration and acquisition; The official documentation [2, 3] is well done except that the document
states that the minimum GPU memory size is 128Mo. It was true for previous PICAMS but not enough for the
PiCam HQ. We were obliged to set it to 256Mo to make it work properly. Not really a problem (note: It is
the gpu_mem option defined in /boot/config.txt).

To get the RAW data, we use the python library picamera [6] (we did not try with V4L.). The procedure is
explained in [4]. This procedure works properly to acquire data from the P1CaM HQ however, this documen-
tation is not up to date as it does not mention the PiICAM HQ. This is this temporary lack of documentation
we will try to fill in this technical document.

This document is organized as follow: in section 2, we try to understand how the data are stored? and it is
the main section of this document. In section 3, we recall the minimal scheme you need to get a picture from
the RAW data. In the last section, section 4, we conclude.

2 Encoding

To understand how the data are stored, let’s have a look at the encoding used by the previous PICAM. According
to [4]:

e The RAW data are located at the end of the file.

e The header of the RAW data starts with the string BRCM.

The first 32,768 bytes of this part is the header data, then comes the Bayer data.

Bayer data is always full resolution.

Bayer data occupies the last 6,404,096 bytes of the output file for the V1 module, or the last 10,270, 208
bytes for the V2 module. Bayer data consists of 10-bit values
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e The 10-bit values are organized as 4 8-bit values, followed by the low-order 2-bits of the 4 values packed
into a fifth byte.

e Bayer data is organized in a BGGR pattern

e For the V1 module, the data consists of 1952 rows of 3264 bytes of data. The last 8 rows of data are
unused (they only exist because the maximum resolution of 1944 rows is rounded up to the nearest 16).

e For the V2 module, the data consists of 2480 rows of 4128 bytes of data. There’s actually 2464 rows of
data, but the sensor’s raw size is 2466 rows, rounded up to the nearest multiple of 16: 2480.

e The last few bytes of each row are unused.

To be able to interpret data from the P1CaMm HQ, we have to know all these parameters for the P1ICAM
HQ), i.e., we have to find:

The position and the size of the data in the file/the position and the size of the header,

e The size in byte of a line (the line stride) and how many pixels are store in this line/the number of lines,

The correct variant of Bayer format,
e The encoding of the pixel values.

So many things to discover... To do so, ghex [5] is our friend. Let’s go!

The position and the size of the header/the data in the file

We bet, the format is compatible with the previous modules. We summary this format in the following table:

Module [ Total length of the raw part (Bytes) | length of the header (Bytes) | length of the image (Bytes)

V1 6404096 32768 6371328
V2 10270208 32768 10237440
HQ ? ? ?

We have to take a picture with the P1ICAM HQ and we will see its content. The length of the file of the
picture we took is 27060380 bytes. We open it with ghex and look for the string BRCM.
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The offset of this string is at offset 8349340, this means that the complete RAW part is 27060380 — 8349340 =
18711040 bytes long. We bet that the header has the same length compared to the previous modules: 32768
bytes. If we are right, this means that the image begins at offset 8382108 (0x7FEG69C). This seems to be
correct - data seem to start at this offset:
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Offset: 0x7FE69C

Then the data is 18711040 bytes long (i.e. occupies the last 18711040 bytes of the file), the header is 32768
bytes long and then the RAW image is 18711040 — 32768 = 18678272 bytes long. We summary these results in
the following table:

Module | Total length of the raw part (Bytes) | length of the header (Bytes) | length of the image (Bytes)

V1 6404096 32768 6371328
V2 10270208 32768 10237440
HQ 18711040 32768 18678272

The size in byte of a line (the line stride) and how many pixels are stored in this
line/the number of lines

According to [1] the sensor resolution of the V1 module is 2592x1944, the resolution of the v2 module is
3280x2464 and the P1ICAM HQ the resolution is 4056x3040.

According to [4]: For the V1 module, the data consists of 1952 rows of 3264 bytes of data. The last 8 rows
of data are unused (they only exist because the mazimum resolution of 1944 rows is rounded up to the nearest
16). For the V2 module, the data consists of 2480 rows of 4128 bytes of data. There’s actually 2464 rows of
data, but the sensor’s raw size is 2466 rows, rounded up to the nearest multiple of 16: 2480. Likewise, the last
few bytes of each row are unused. We have to guess the image dimension.

Module | number pixels of a line | size in byte of a line [ used part of the line

V1 2592 3264 2592 % 10/8 = 3240
V2 3280 4128 3280 * 10/8 = 4100
HQ 4056 ? ?

We have to deduce the size of one line in byte. The pitfall is that the PiICAM H(Q encodes values on 12bits
instead of previous modules that encode values on 10bits. This means that a line of 4056 pixels will consume
4056 « 12/8 = 6084 bytes. The length of a line in byte in the file must certainly be a multiple of 16. It then can
be 6096, 6112... This value can be deduced by finding the number of the lines in the file and dividing the total
size by the number of lines or by simply studying the header.

If we look for in a picture taken by the V1 module the value 3264 (0x0CC0) and in a picture taken by the
V2 module the value 4128 (0x1020), we find that these values are at a constant offset (160 - 0xA0) from the
beginning of the header. If we peek the value at the same offset in a image taken by a P1CAM HQ, we find the
value 6112 (0x17E0). This validates our though.
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Then we can fill in our table:

Module | number of pixels of a line [ size in byte of a line | used part of the line

V1 2592 3264 2592 % 10/8 = 3240
V2 3280 4128 3280 % 10/8 = 4100
HQ 4056 6112 4056 * 12/8 = 6084

The correct variant of Bayer format/The encoding of the pixel values

It is said in [4] that for V1 and V2 modules, Bayer data is organized in a BGGR pattern but later, it is said
that data are organized as follow:

# GBGBGBGBGBGBGB
# RGRGRGRGRGRGRG
# GBGBGBGBGBGBGB
# RGRGRGRGRGRGRG

In my point of view, the data start with a blue pixel followed by a red pixel and next line, the line starts with
a green pixel, followed by a red one (and so on) like in the following picture:

This is what we have observed in previous modules and what we think for this P1ICAM HQ.

One point important to notice is that previous modules were 10bits modules. According to [4], for the
previous modules: the 10-bit values are organized as 4 8-bit values, followed by the low-order 2-bits of the 4
values packed into a fifth byte.. As we have 12bits values, we suspect that 2 consecutive 12bits values (two
successive pixels) are organized as 2 8-bit values, followed by the low-order 4-bits of the 2 values packed into a
third byte. After an examination with ghex, it seems to be correct.

Notice that this part of our report must be validated. We have taken blue pictures, red pictures... to try to
validate but we do not have enough time to provide an absolute/rigorous validation. We may be wrong.



3 From RAW format to a beautiful picture

Once we have decoded the RAW data, the minimal work you have to do to get a acceptable image is summarized

in the following picture:
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The green boxes have to be implemented but it is out of the scope of this document.

How to know which P1CAM module has been used?

The problem if you want to generate an image using RAW bayer data from a P1CAM is that you have to detect
which P1ICAM has been used to take the picture.

As we can see in the following pictures, it is simple to detect which P1ICAM has been used by just using the
header of the file or the header of the RAW part. Unfortunately, my new P1ICAM H(Q module has not the value

we would have expected in headers...
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4 Conclusion

We provide in this document all missing parameters we need to interpret RAW bayer data from P1Cam
HQ. However some parameters need to be validated and it still misses some important points. For example,
specification of the IMX219 sensor (the sensor used in the P1ICAM V2) has a region dedicated to optical black.
It would be great if the PICAM HQ has such a region and if we could fetch values from this area.

References

[1] https://www.raspberrypi.org/documentation /hardware/camera/.

[2] https://www.raspberrypi.org/documentation /configuration/camera.md.

[3] https://www.raspberrypi.org/documentation/raspbian/applications/camera.md.

[4] https://picamera.readthedocs.io/en/release-1.13 /recipes2.html#raw-bayer-data-captures.
[5] ghex. https://wiki.gnome.org/Apps/Ghex.

[6] picamera python library. https://picamera.readthedocs.io.

[7] Dan Aldred, Wesley Archer, Jody Carter, PJ Evans, Richard Hayler, James Singleton, and Rob Zwetsloot.
The official raspberry pi camera guide. Raspberry Pi Trading Ltd, 2020.



