How to interpret RAW Bayer data
from the P1CAM HQ

J. Fabrizio
2020-01-06

Abstract

The P1Cams (V1, V2 and now HQ) are interesting cameras as they are not expensive and provide RAW
data from the sensor. Recently, a new one has been released, the P1ICAM HQ, but the official documentation
does not provide any information on the internal format. This document, explains how to extract/interpret
RAW images with this new P1Cam HQ.

1 Introduction

The P1Cams (V1, V2 and now HQ) are interesting cameras, usable in a research context and not expensive. It
is possible to get RAW data from these cameras but it lacks some documentation to interpret data for the last
PiCaM HQ. This lack will certainly be filled very soon, but until this update, we propose to share my work to
help other people to make it work'. I expose in this document the few things you need to interpret the data.

Before starting, you can read The official raspberry pi camera guide [7] which provide a lot of precious
information. Details about PICAMS can be found here [1]. This P1ICAM HQ is based on the Sony IMX 477
CMOS sensor. You should have a look to its specification.

Configuration and acquisition; The official documentation [2, 3] is well done except that the document
states that the minimum GPU memory size is 128Mo. It was true for previous PICAMS but not enough for the
PiCam HQ. We were obliged to set it to 256Mo to make it work properly. Not really a problem (note: It is
the gpu_mem option defined in /boot/config.txt).

To get the RAW data, we use the python library picamera [6] (we did not try with V4L.). The procedure is
explained in [4]. This procedure works properly to acquire data from the P1CaM HQ however, this documen-
tation is not up to date as it does not mention the PiICAM HQ. This is this temporary lack of documentation
we will try to fill in this technical document.

This document is organized as follow: in section 2, we try to understand how the data are stored? and it is
the main section of this document. In section 3, we recall the minimal scheme you need to get a picture from
the RAW data. In the last section, section 4, we conclude.

2 Encoding

To understand how the data are stored, let’s have a look at the encoding used by the previous PICAM. According
to [4]:

e The RAW data are located at the end of the file.

e The header of the RAW data starts with the string BRCM.

The first 32,768 bytes of this part is the header data, then comes the Bayer data.

Bayer data is always full resolution.

Bayer data occupies the last 6,404,096 bytes of the output file for the V1 module, or the last 10,270, 208
bytes for the V2 module. Bayer data consists of 10-bit values

IMy level in English is rather low, and especially, I have no time to write this report. I write it very fast, without proofreading
it. There must be plenty of mistakes - please forgive me for that. It is better than nothing.
2Be careful, my interpretation is maybe wrong; you use my conclusions at your own risk!

e The 10-bit values are organized as 4 8-bit values, followed by the low-order 2-bits of the 4 values packed
into a fifth byte.

e Bayer data is organized in a BGGR pattern

e For the V1 module, the data consists of 1952 rows of 3264 bytes of data. The last 8 rows of data are
unused (they only exist because the maximum resolution of 1944 rows is rounded up to the nearest 16).

e For the V2 module, the data consists of 2480 rows of 4128 bytes of data. There’s actually 2464 rows of
data, but the sensor’s raw size is 2466 rows, rounded up to the nearest multiple of 16: 2480.

e The last few bytes of each row are unused.

To be able to interpret data from the P1CaMm HQ, we have to know all these parameters for the P1ICAM
HQ), i.e., we have to find:

The position and the size of the data in the file/the position and the size of the header,

e The size in byte of a line (the line stride) and how many pixels are store in this line/the number of lines,

The correct variant of Bayer format,
e The encoding of the pixel values.

So many things to discover... To do so, ghex [5] is our friend. Let’s go!

The position and the size of the header/the data in the file

We bet, the format is compatible with the previous modules. We summary this format in the following table:

Module [Total length of the raw part (Bytes) | length of the header (Bytes) | length of the image (Bytes)

V1 6404096 32768 6371328
V2 10270208 32768 10237440
HQ ? ? ?

We have to take a picture with the P1ICAM HQ and we will see its content. The length of the file of the
picture we took is 27060380 bytes. We open it with ghex and look for the string BRCM.

d image_000000.]pg - GHex

File Edit View Windows Help

007F668B96 36 52 8B 93 40 42 52 43
007F66AAQD 00 74 65 73 31 2E 30 00
007F66C900 00 0O 00 00 00 00 00 0O
007F66E800 00 00 00 00 00 00 00 06
007F670700 00 60 00 00 00 00 00 00
007F672600 00 00 00 00 00 00 06 00
007F674500 00 00 00 00 00 00 00 0O
007F676400 00 00 00 00 9B 6F 00 00
007F678300 00 GA 00 00 00 00 00 00
007F67A200 00 00 OA 00 00 00 06 06
007F67C100 00 00 00 00 00 00 06 00
007F67EQQ0 00 0O 00 00 00 00 00 0O
007F67FFO0 00 60 00 00 00 00 06 0O
007F681EQO 00 00 00 00 00 00 4B 57
007F683D00 00 00 00 00 00 00 06 00
007F685C00 00 00 00 00 00 00 00 0O
007F687B00 00 GO0 00 00 00 00 00 0O

AATEARAAND AN AA AR AN OA AA AN AA AO AN AA AA AN A0 A0 AG AA AR AN OA NA AN AA NO AD AA AA AN AN
Signed 8 bit: 64 Signed 32 bit: 112 Hexadecimal: 4
Unsigned 8 bit: 6. Unsigned 32 bit: 113 Octal: 100
Signed 16 bit: Signed 64 bit: Binary: 01000000
Unsigned 16 bit: 6 Unsigned 64 bit: Stream Length: 8
Float 32 bit: 2,102588e+02 Float 64 bit:

v little endian decoding B gned and float as hexadecimal

The offset of this string is at offset 8349340, this means that the complete RAW part is 27060380 — 8349340 =
18711040 bytes long. We bet that the header has the same length compared to the previous modules: 32768
bytes. If we are right, this means that the image begins at offset 8382108 (0x7FEG69C). This seems to be
correct - data seem to start at this offset:

e image_000000.]pg - GHex
file Edit View Windows Help

007FE59200 00 00 06 00 00 00 00 00
007FE5B100 00 00 00 00 00 00 00 00
007FE5D000 00 00 00 00 00 00 00 00
0O7FESEFQO 00 00 00 00 00 00 00 00
007FEGOEQD 00 00 00 00 00 00 60 00
007FE62D06 00 06 06 00 00 00 00 00
007FE64C0O0 00 0O 00 00 00 00 00 00
007FE66BOO 00 00 00 00 00 00 00 00 5o 5230
007FE68AQO 00 0O 00 00 00 00 26 49 503 &L. M.'R.#R.#
007FE6A94C B6 1F 49 A5 21 22 4B A6 SIJINLUL &VR'N.'K.&E. S.#L.!K
007FE6C832 26 4A 91 20 4C 4E 5D 25 5 ! N]%P. 'X9"P["W.
007FE6E720 53 77 28 51 DO 4B 83 22 48
007FE70650 C1 23 4E 36 1E 19 25 4F 65
0O7FE725A0 23 48 F2 28 5A 23 4E A5 23
007FE74423 51 F9 22 4E A7 5D 9D 21 55
007FE7634E 5D 1F 46 DE 23 DB 1F 4E C1
007FE782C4 27 4F EB 21 4B 21 4D A8 22

ARTEETA1IY 2 &R 27 AF BT A 52 @& 24 A0
Signed 8 bit: 38 Signed 32 bit: 5478 Hexadecimal: 26
Unsigned 8 b 38 Unsigned 32 bit: 834 Octal:
Signed 16 bi Signed 64 bit: 54 Binary: 00100110
Unsigned 16 bit: 18726 Unsigned 64 bit: Stream Length: 8
Float 32 bit: e-19 Float 64 bit:
+ Show little endian decoding Show unsigned and float as hexadecimal

Offset: 0x7FE69C

Then the data is 18711040 bytes long (i.e. occupies the last 18711040 bytes of the file), the header is 32768
bytes long and then the RAW image is 18711040 — 32768 = 18678272 bytes long. We summary these results in
the following table:

Module | Total length of the raw part (Bytes) | length of the header (Bytes) | length of the image (Bytes)

V1 6404096 32768 6371328
V2 10270208 32768 10237440
HQ 18711040 32768 18678272

The size in byte of a line (the line stride) and how many pixels are stored in this
line/the number of lines

According to [1] the sensor resolution of the V1 module is 2592x1944, the resolution of the v2 module is
3280x2464 and the P1ICAM HQ the resolution is 4056x3040.

According to [4]: For the V1 module, the data consists of 1952 rows of 3264 bytes of data. The last 8 rows
of data are unused (they only exist because the mazimum resolution of 1944 rows is rounded up to the nearest
16). For the V2 module, the data consists of 2480 rows of 4128 bytes of data. There’s actually 2464 rows of
data, but the sensor’s raw size is 2466 rows, rounded up to the nearest multiple of 16: 2480. Likewise, the last
few bytes of each row are unused. We have to guess the image dimension.

Module | number pixels of a line | size in byte of a line [used part of the line

V1 2592 3264 2592 % 10/8 = 3240
V2 3280 4128 3280 * 10/8 = 4100
HQ 4056 ? ?

We have to deduce the size of one line in byte. The pitfall is that the PiICAM H(Q encodes values on 12bits
instead of previous modules that encode values on 10bits. This means that a line of 4056 pixels will consume
4056 « 12/8 = 6084 bytes. The length of a line in byte in the file must certainly be a multiple of 16. It then can
be 6096, 6112... This value can be deduced by finding the number of the lines in the file and dividing the total
size by the number of lines or by simply studying the header.

If we look for in a picture taken by the V1 module the value 3264 (0x0CC0) and in a picture taken by the
V2 module the value 4128 (0x1020), we find that these values are at a constant offset (160 - 0xA0) from the
beginning of the header. If we peek the value at the same offset in a image taken by a P1CAM HQ, we find the
value 6112 (0x17E0). This validates our though.

e image_000000.]pg - GHex

File Edit View Windows Help

007F660FFB 49 DA 35 52 AD D1 75 2D
007F662E82 F9 A9 1C 2C 15 27 DA 34
007F664DF1 23 06 94 32 DD 1C 86 AF
007F666COF FF 00 8D D7 24 : 4 C9 59 ED 6B
007F668B96 36 52 8B 93 40 42 52 43
007F66AAG0 00 74 65 73 31 2E 30 66
007F66C900 00 00 00 00 00 00 06 00
007FG6EB00 00 0O 00 00 00 00 00 0O
007F670700 00 0O 00 00 00 00 00 0O
007F672600 00 00 00 60 ¢ 00 00 00 00
007F674500 00 00 00 00 00 00 06 06
007F676400 00 00 00 00 9B 6F 00 00
007F678300 00 GA 00 00 4 00 00 00 0O
007F67A200 00 00 OA 00 00 00 06 0O
007F67C100 00 00 006 00 00 00 00 00
007F67E000 00 00 00 00 00 00 06 00
007F67FFO0 00 00 00 00 00 00 06 00

ARTERRIEAN AR AR NA AR AA AA A1 AA AR AR AA AR AN A AR AR AR 57 AQ AA
Signed 8 bit: 23 Signed 32 bit: 23 Hexadecimal:
Unsigned 8 bit: 23 Unsigned 32 bit: 23 Octal:
Signed 16 bit: 23 Signed 64 bit: 23 Binary: 00010111
Unsigned 16 bit: 23 Unsigned 64 bit: 23 Stream Length: 8
Float 32 bit: 44 Float 64 bit:
+ Show little endian decoding Show unsigned and float as hexadecimal

Offset: 0x7| ; 0x2 bytes from 0x7F673C to 0x7| elected

Then we can fill in our table:

Module | number of pixels of a line [size in byte of a line | used part of the line

V1 2592 3264 2592 % 10/8 = 3240
V2 3280 4128 3280 % 10/8 = 4100
HQ 4056 6112 4056 * 12/8 = 6084

The correct variant of Bayer format/The encoding of the pixel values

It is said in [4] that for V1 and V2 modules, Bayer data is organized in a BGGR pattern but later, it is said
that data are organized as follow:

GBGBGBGBGBGBGB
RGRGRGRGRGRGRG
GBGBGBGBGBGBGB
RGRGRGRGRGRGRG

In my point of view, the data start with a blue pixel followed by a red pixel and next line, the line starts with
a green pixel, followed by a red one (and so on) like in the following picture:

This is what we have observed in previous modules and what we think for this P1ICAM HQ.

One point important to notice is that previous modules were 10bits modules. According to [4], for the
previous modules: the 10-bit values are organized as 4 8-bit values, followed by the low-order 2-bits of the 4
values packed into a fifth byte.. As we have 12bits values, we suspect that 2 consecutive 12bits values (two
successive pixels) are organized as 2 8-bit values, followed by the low-order 4-bits of the 2 values packed into a
third byte. After an examination with ghex, it seems to be correct.

Notice that this part of our report must be validated. We have taken blue pictures, red pictures... to try to
validate but we do not have enough time to provide an absolute/rigorous validation. We may be wrong.

3 From RAW format to a beautiful picture

Once we have decoded the RAW data, the minimal work you have to do to get a acceptable image is summarized

in the following picture:

Image Capture ’ > ‘

Gain

<L

’ Dead Pixels | >> | Black Light

J

Demosaicing

J

White Balance

J

Encoding Tone Mapping

The green boxes have to be implemented but it is out of the scope of this document.

How to know which P1CAM module has been used?

The problem if you want to generate an image using RAW bayer data from a P1CAM is that you have to detect
which P1ICAM has been used to take the picture.

As we can see in the following pictures, it is simple to detect which P1ICAM has been used by just using the
header of the file or the header of the RAW part. Unfortunately, my new P1ICAM H(Q module has not the value

we would have expected in headers...

w image_000002.jpg - GHex

e Edit View Windows elp
000DOCOCOFF D8 FF E1 64 02 45 78 69 66 00 00 4D 4D 00 2A....d.Exif..MM.* voad"EXif. .MM, ¥ voa W dUExif. .MM, *
0000001000 00 00 68 60 GA 61 G0 00 64 60 00 60 1 60 OB......cvvvvuiuaeal f[eeneiiiiinaan il [heeiii i
00OPEOE200A 20 91 01 00 04 00 OO 00 B1 80 B0 07 98 BL OF.cvvvvunnns fewmaioiiiiaaiii oeiiiiiiaa o
BDEOBAE3ECe 02 60 6O 6O GC 00 GO 00 86 A1 10 60 02 00 00.......cccaeeaeieoeiiiaranae o
0000004000 OA 00 60 60 92 61 1A 00 65 60 00 60 O1 60 BO.......ol feaniiiiiiiaiiind baiiii i i
0O0OEES5600 9C 01 1B 00 05 00 00 00 01 00 00 0B A4 01 28........cvvvaal oeniinn, | |pocooccaacaaacaaa (
000OOO6ER0 03 09 PO OO 01 00 02 00 PO A1 32 00 02 00 OO.....cvvvvv2iiin foaraaaiiaan Aooad |oacaocaonaaan Aa o
0000007000 14 00 00 60 AC Y T | T
0000008000 00 87 69 00 04 00 00 0O 61 00 0O 00 CO 00 0O...i............ s00fhacnoacacaana s0ofhaoacacaocanaan
0000009003 84 EP 61 73 70 62 65 72 72 79 50 69 00 52 50..ﬁaspberryPi.RP ..ﬁaspberryPi.RP ..ﬁaspberryPi.RP
000O0OOAOSF 6F 76 35 36 34 37 00 00 00 00 48 00 00 00 O01_ov5647....H.... | imx219....H.... | testc..... Haooa
000000OBOEO 00 60 48 00 0O 00 01 32 30 31 39 3A 31 3@ 3A...H....2019:10: S50 Aaaardcl i HEEH .ooHL L. 2020:05:
0OBOOOCO30 34 20 31 35 3A 30 39 3A 32 34 00 00 17 82 9A04 15:09:24..... 03 19:24:03..... Pl #E8EB8ER 00000

Signed 8 bit: | 82 Signed 32 bit: | 1886609746 exadecimal: | 52 decimal:| 52 decimal: | 52
Unsigned 8 bit: | 82 Unsigned 32 bit:| 1886609746 Octal: | 122 Octal: | 122 Octal:| 122

Signed 16 bit: | 24914 Signed 64 bit:| 1886609746 Binary: | 01010010 Binary: 01010010 Binary:| 01010010
Unsigned 16 bit: | 24914 Unsigned 64 bit:| 1886609746 Stream Length: | 8 =+ [pLength:| 8 — + |plength:| 8 -+

oat 32 bit:| 3,012900e+29 oat 64 bit: | 1,962640e-+243
+/| Show little endian decoding Show unsigned and float as hexadecima t as hexadecimal t as hexadecimal

Offset: 0x92

@ image_000002.jpg - GHex (ENENER

File Edit View Windows Help

PO36DBEASF FF D9 40 42 52 43 4D 6F 00 00 00 FC 7F 00 00_..@BRCMo....... [@BRCMO.}.0..@RCMa. ..
BO36DBFO0O 00 0O 00 BF 76 35 36 34 37 20 76 65 72 73 69....[v5647 versi |.[nx219 version | festc ve
0036DCOO6F GE 20 30 2E 31 00 60 0O 00 00 00 00 60 00 0Oon @.1.......... 1.0, .o rsion 1.0.......
0036DC1000 G0 00 00 00 00 00 G0 00 00 00 00 00 00 B0 BO......vvuvviiirl | eerrnrneniiiiie e,
0036DC2000 60 DO 00 00 0O GO 00 0O 60 60 00 00 60 00 0O................ I
0036DC3000 00 DO 00 00 6O 00 0O 00 00 80 00 00 00 B0 BO......cvuviiiiiill | eeeeee i e

0036DC4000 00 0O OO0 60 0O DO 00 00 60 00 00 B0 B0 B0 BO......ccviiiiiitl o it e e
0036DC5000 60 00 00 0O 60 00 GO0 00 00 00 00 00 00 00 O0......covvviveinel fivriiinniiiinen fiineiiii i nas
0036DC600O 60 00 00 00 60 00 00 00 00 00 60 60 B0 B BO...... .ottt ot it e e

0036DC7000 60 0O 00 24 81 0O 00 0O 68 OO 01 FF 00 00 BO....5........... siloooooooaaoaaoa |oooooaaaa $aao0aaa
0036DC8O00 00 0O 00 CO OC DO 00 0O 60 00 60 B0 B0 B0 BO....ottt o it e e
0036DC9000 60 00 60 32 35 39 32 78 31 39 34 34 00 00 00....2592x1944... 20 canaoa0aal |ooaooaaa full....

0036DCADOGO 60 00 00 00 60 0O 00 00 00 00 60 B0 B0 B BO...... .ottt ot e e

Signed 8 bit:| 111 Signed 32 bit: | 909473391 Hexadecimal: | 6F decimal: | 69 decimal:| 74
Unsigned 8 bit:| 111 Unsigned 32 bit: | 909473391 Octal: | 157 Octal: | 151 Octal: | 164
Signed 16 bit: | 30319 Signed 64 bit: | 909473391 Binary:| 01101111 Binary: | 01101001 Binary:| 01110100
Unsigned 16 bit: | 30319 Unsigned 64 bit: | 909473391 Stream Length: | 8 -+ Length: | 8 = | + Length:| 8 - | +
Float 32 bit: | 2,704004e-06 Float 64 bit: | 9,972875e+260
[Show little endian decoding [_] Show unsigned and float as hexadecimal it as hexadecima gt as hexadecimal

Offset: 0x36DBF4

4 Conclusion

We provide in this document all missing parameters we need to interpret RAW bayer data from P1Cam
HQ. However some parameters need to be validated and it still misses some important points. For example,
specification of the IMX219 sensor (the sensor used in the P1ICAM V2) has a region dedicated to optical black.
It would be great if the PICAM HQ has such a region and if we could fetch values from this area.

References

[1] https://www.raspberrypi.org/documentation /hardware/camera/.

[2] https://www.raspberrypi.org/documentation /configuration/camera.md.

[3] https://www.raspberrypi.org/documentation/raspbian/applications/camera.md.

[4] https://picamera.readthedocs.io/en/release-1.13 /recipes2.html#raw-bayer-data-captures.
[5] ghex. https://wiki.gnome.org/Apps/Ghex.

[6] picamera python library. https://picamera.readthedocs.io.

[7] Dan Aldred, Wesley Archer, Jody Carter, PJ Evans, Richard Hayler, James Singleton, and Rob Zwetsloot.
The official raspberry pi camera guide. Raspberry Pi Trading Ltd, 2020.

