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Received: May 2014 / Accepted: Feb 2016

Abstract In this paper, we propose a text detection al-
gorithm which is hybrid and multi-scale. First, it relies

on a connected component-based approach: after the
segmentation of the image, a classification step using a
new wavelet descriptor spots the letters. A new graph

modeling and its traversal procedure allow to form can-
didate text areas. Secondly, a texture-based approach
discards the false positives. Finally, the detected text
areas are precisely cut out and a new binarization step

is introduced. The main advantage of our method is

that few assumptions are put forward. Thus, “challeng-
ing texts” like multi-sized, multi-colored, multi-oriented

or curved text can be localized. The efficiency of Text-
Catcher has been validated on three different datasets.
Two come from the ICDAR competition and the third

one contains photos we have taken with various daily

life texts. We present both qualitative and quantitative
results.

Keywords Text detection · Toggle Mapping Mor-

phological Segmentation · Text cut-out · Wavelet
transform · Letter extraction and recognition · Natural
scene

1 Introduction

In recent years, there has been a significant increase of

research works on text detection in images and video se-
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quences. Methods to localize scene texts are often ded-
icated to specific applications such as vehicle license

plate recognition [3], form reading, text recognition to
help visually impaired people [53], translation of street
signs, reading of engineering drawings/maps, driving

help, image and video indexing, etc. In such cases, hy-
potheses on color, font or size of the characters, or on
the background are considered. Daily life text spotting,

especially in urban areas, is still a challenging and open
problem. Due to the variability of texts and cluttered
backgrounds, it is impossible to integrate strong hy-
potheses in text detection algorithms. For example, text

strings can be multi-color, curved, vertical and charac-
ters do not necessarily have the same size, font or align-
ment. Furthermore, text may suffer from artefacts such

as low contrast, blur, variations of illumination (spec-
ular reflections, non-uniform illuminations, shadows),
cluttered surrounding background, occlusion, etc.

In this paper, we propose a context free system for
text localization and extraction. We developed an al-
gorithm that can detect and extract all textual infor-

mation of natural scenes. Although many works have
been proposed (see Section 2 for a review of some re-
cent ones), most of them assume strong hypotheses. On
the contrary, our main objective is to limit the number

of assumptions to detect as many text as possible in
complex configurations. We only make two hypotheses:
characters belong to the Latin alphabet and we do not

deal with cursive text.

Compared to our previous work in [10] all steps have
been improved except the segmentation step:

– we introduce a new shape descriptor to separate
text and non text regions (notice that, this shape

descriptor is a good candidate to perform, in the
future, the transcription of the detected text - this
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means that the transcription would be provided with-
out additional cost),

– the grouping of candidate characters is now done by
using a new connexity graph of and with an efficient

graph traversal algorithm. We can now detect text
in every direction, slanted and curved,

– the validation of the text candidate has been revis-

ited to be improved. As we make only a few hypoth-
esis on the detected text, the number of false pos-
itives can increase. Then the validation part must

be very efficient,
– text is precisely spotted in the image with a simple

strategy (common strategies are not precise enough
when dealing with rounded or tilted text),

– the binarization of detected text is now performed
by a new algorithm, able to aggregate results from
different scales to give a unique binarization (it can

also merge the results of detection from different
color channels if one want to treat each color plane
separately),

Compared to the state of the art, our method can de-
tect:

– text slanted in an arbitrary direction or curved text,

– text containing characters without any restriction
on the color or on orientation.

Methods in the literature that can deal with curved text
are very uncommon. Most of the state of the art algo-
rithms are restricted to single-colored and horizontal

texts. It is difficult to relax these constraints to gener-
alize existing methods without increasing the number of
false positives. On the contrary, our method is generic

and due to its modular structure, it is easy to special-
ize some steps to get a detector dedicated to a spe-
cific context. Our precise cutting-out of detected text
is also very useful for automatic text enhancement or

text blurring.

The paper is organized as follows. Section 2 provides

a brief survey of relevant recent works on text localiza-
tion and Section 3 gives an overview of our proposed
system for text localization. Following sections describe

each step of the localization process. Section 4 first ex-
poses the segmentation of the input image into a set of
connected components (CCs). Section 5 details the clas-
sification process of the CCs into letter or non-letter.

The grouping stage of letter regions and the mask com-
putation which cut out each text string are depicted in
Section 6. Section 7 describes our text string validation

mechanism. In the last step, text is extracted using a
multi-scale binarization process detailed in Section 8.
Finally, the performances of our algorithm are evelu-
ated in Section 9. Concluding remarks and perspectives

are given in Section 10.

2 State-of-the-art

Many methods to localize text in natural images have
already been proposed. Usually, in the literature, text
localization systems are divided into two main cate-

gories depending on the features they are working on:
texture-based approaches and connected component based
approaches. Some of them use both and are then con-

sidered as hybrid. A typical algorithm is divided into
three main steps:

1. The important information is first highlighted (on a
binary map for example) using a segmentation or a
specific characterization process, depending on the

features (texture or connected components) the ap-
proach works on.

2. A local classification step separates letter and non-
letter regions.

3. A grouping is finally often necessary to fuse different
letter regions and form complete words.

Note that sometimes a global classification may be nec-
essary after the grouping. This is often referred as a val-

idation step and allows to consider global information

to form words, or, more generally, text strings.
Some surveys on text localization have already been

done [18,43,56]. In this section, we chose to focus on

some recent algorithms (published since 2010) on Latin
text detection, even if some interesting works dealing
with multi-script text have also been proposed [13,23].

Even if the framework of most of the algorithms

is common, multiple strategies have been explored for
each individual step.

For CC-based approaches (and for hybrid methods

integrating a first step of analysis of CCs), the segmen-
tation step is of crucial importance. For that, the Stroke
Width Transform (SWT) introduced by Epshtein [8],

has been widely used [52,19]. The Maximally Stable Ex-
tremal Regions (MSER) introduced by Matas et al. [27]
has also been widely used [25,29,50,36]. Both provide
interesting results. The mathematical morphology field

has been investigated with the Toggle Mapping Mor-
phological Segmentation (TMMS) [10]. Classical bina-
rization methods, like Niblack thresholding, have also

been tested [11,28]. Then, to analyze the segmented
regions, different classifiers and descriptors have been
explored: Support Vector Machines (SVM) with His-
togram of Oriented Gradients (HOG), geometric fea-

tures or shape descriptors [24,48,10,28], Adaboost [36,
50,11], Random Forests [20,52] and k-Nearest-Neighbors
(k-NN) [19]. Most of these approaches can only deal

with horizontal text zones, or almost horizontal ones [31].
Note that the method proposed in [42] is the only one
that can manage curved text by using a Quadtree-based

technique.
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For texture-based approaches (and for hybrid meth-
ods with a characterization by texture), the texture
analysis is performed in different spaces after a data
transformation: Discrete Cosine Transform (DCT) [38],

HOG [41,46,4,10,11], Discrete Shearlet Transform (DST) [55],
SIFT [26], edges analysis [4,37,46,53,11] and Gradient
Vector Flow (GVF) [37] have been investigated.

As specified before, some methods mix CC-based
strategies and texture-based strategies [2,10,11,28,36].

Recently, deep learning based algorithms have emerged

and gave very promising results [47,16,15]. Their main
advantage is they can learn interesting features on very
large datasets. However, they are still limited to hori-
zontal texts.

We put forward a graphical presentation in Tables 1, 2
and 3 that summarizes, for each method, how informa-
tion is highlighted (features are in italic blue and tools

are in bold red), classified (letter versus non-letter) and
grouped (letters into text strings). These tables also
give, for each algorithm, its advantages (i.e. the char-
acteristics it can deal with) and its limitations.

Note that we do not mention in this table the scores
given by these methods. Indeed, these scores are not
comparable because they do not use the same test sets

and, sometimes, have been obtained with different eval-
uation protocols. Moreover, only few of them give the
average computation time and explain how the algo-

rithm performs in the worst case (images with a lot of
textures for example).

As shown in the two last columns of Tables 1, 2
and 3, recent methods mainly focus on few difficulties

concerning the text characteristics. In this article, we

propose a method called TextCatcher which is dedi-
cated to daily life text detection because it can manage:

– multidirectional (horizontal, vertical, tilted), perspec-
tive and curved texts,

– texts with letters in different orientations or colors,
– textured texts and texts on cluttered background,

– texts with various size and fonts.

Especially, among all listed methods, only one is able to
manage curved text. Moreover, our algorithm provides

an accurate detection, thanks to an original binariza-
tion scheme. To the best of our knowledge, our approach
is the only one which is able to handle so many diffi-

culties by relaxing simultaneously lots of hypotheses on
texts to detect. In the next section, we give a brief de-
scription of our proposed approach.

3 Overview of the Method

The work presented in this article is an extension of

the one proposed in [10] and describes a full system

for efficient text localization in natural images. Even

if the main goal is to localize texts in images, we also
propose a binarization method that permits to extract
each letter of the text region. In this extended version,

although the global processing chain remains the same,
each of its steps has been improved by using more effi-
cient and original techniques. Figure 2 shows the global
flowchart of our method, from the multi-scale pyramid

of images to the extraction of the letters. Each stage

of the chain is briefly summarized in this section, and
fully described in the next ones. Our method is hybrid

because it uses connected components (CC) to gener-
ate text candidates and texture features to validate or
discard these candidates.

The first stage consists in localizing potential zones
by using a CC-based approach. For that, the image is
first segmented using the Toggle Mapping Morpholog-

ical Segmentation (TMMS) algorithm (see Section 4)
whose description is given in [9]. Then, we use two dif-
ferent classification steps to tag each CC as letter or

non-letter. The first method uses common and fast ge-
ometric criteria such as size or aspect ratio of CCs with
fixed thresholds (see Section 5.1). The second one relies
on machine learning (see Section 5.2). We introduce a

new shape descriptor based on a fast wavelet decom-
position. The combination of this shape descriptor and
a machine learning approach (based on a k-Nearest-

Neighbours algorithm) allows, not only to get a label
for each CC (letter or non-letter), but also, without any
additional cost, to identify these letters. In the last step
of this localization stage, CCs are grouped along multi-

ple possible directions using a graph representation (see
Section 6).

After this localization stage, the second stage based
on a texture analysis permits to validate or discard the
previous grouped CCs. Since the first stage is local to

each CC, we now consider global information, i.e., a
group of letters is supposed to form a text string. For
that, we consider different kinds of features: Gray Level
Co-occurence Matrix, Haralick texture features [14], His-

togram of Oriented Gradients and Local Binary Pat-
terns [34]. A Support Vector Machine (see Section 7)
is used to validate grouped CCs as text strings or to

discard false positives (non-text strings).

These two previous stages, candidate generation (in-
cluding segmentation, local classification and grouping

steps) and candidate validation, are applied at different
scales of the input image. Between two scales, the size
of the image (width and height) is reduced by a factor

of 2. This is repeated until the width or the height of
the image becomes smaller than a given threshold (150
pixels). This allows to detect letters with different sizes

in images. At each scale, the process is performed on
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Table 1 Some texture-based works proposed since 2010 (DST: Discrete Shearlet Transform, HVS: Human Visual System,
TSM: Tree-Structured model, NMS: Non Maximum Suppression, SW: Stroke Width, SWT: Stroke Width Transform), CNN:
Convolutional Neural Network, RSLA: Run Length Smoothing Algorithm. Tools are in bold red and features in italic blue.

Segmentation / Local Grouping Advantages Limitations
Characterization classification

T
e
x
t
u
r
e

Bai [4] Edge density SVM Color, SW Any size Many thresholds
SW consistency HOG Distance Complex backgrounds Contrasted text

Direction No curved text
Mao [26] Neural Network Thresholding Distances Any orientation Computation time

Region growing Color Any font No curved text
SIFT Area Complex background

Hough transform
Phan [37] Gradient Vector Flow Clustering Size Any font Bounded text size

Edges Symmetry components Color Complex backgrounds Horizontal text
Stroke thickness
Gap

Prakash [38] DCT SWT Aspect Any orientation Bounded text size
AC component Dilation Size Any font No curved text

Heuristics No tuning
Shi [41] Dynamic programming Optimization Detect and recognize Simple background

HOG Spatial constraints No curved text
TSM

Wang [46] Edges Random Ferns Pictorial structures Detect and recognize Only horizontal
HOG NMS Any font No curved text

Yi [53] Stroke orientation Adaboost Height Complex background Manual pre localization
Edge distribution Block patterns Alignment Any Illumination Horizontal text
Gradient Area Any font

Overlapping
Zagoris [54] HVS maps Thresholding Size Any size Many thresholds

Center-surround regions Heuristics Distance Horizontal text
ON/OFF cell modeling Geometric features Width/height Simple background

Hole number
Overlapping

Zhang [55] DST Multi-scale voting Any size Coarse detected regions
Thresholding Complex background No curved text
Dilation

Wang [47] 32x32 patches CNN NMS Recognize text Only horizontal

Jaderberg [16] 24x24 patches CNN RLSA Recognize text Only horizontal
Simple background

Huang [15] MSER CNN NMS Only horizontal

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 Steps of our chain at one scale and with one polarity (a) Input image (b) TMMS segmentation (c) Geometric filters
(d) Shape analysis (e) Zoom on graph grouping (f) Valid and invalid candidate text areas (g) Binarization (h) Image restricted
to the precise text localization result.

each polarity (i.e., the original image and the negative
image).

The work proposed in [10] is dedicated to horizon-
tal or tilted mono color text detection. In this paper, all
steps, except the segmentation, have been entirely re-

visited both to be more accurate and deal with curved
and challenging texts by making only few hypotheses

on texts to detect. The local classification step is to-
tally new. Because we only use one descriptor (based

on wavelets), it is easier and faster to compute than
the previous classification which used a cascade SVMs
with three different descriptors. The grouping step is

also new, based on a new graph modeling, that al-
lows to regroup connected components in any direc-
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Table 2 Some connected component based works published since 2010 (eMSER: Edge preserving MSER, CBIF: Contrast-
based Blur Invariant Features, CSER: Class Specific Extremal Regions). Tools are in bold red and features in italic blue.

Segmentation / Local Grouping Advantages Limitations
Characterization classification

C
o
n
n
e
c
t
e
d

c
o
m
p
o
n
e
n
t

Cong [52] SWT Tresholding SW Any orientation No curved text
Edges Random forest Size Any font

Color Any illumination
Complex background

Kan [19] SWT k-NN Distance Detect and recognize Only horizontal
Edge projection Multi-orientation Position Any size No curved text

responses Any font
Karaoglu [20] Connected opening Random forest Distance Any size Horizontal text

Gamma correction Geometric features Gap Any illumination Simple background
Difference Shape features Any font
Binarization Corners

CBIF
Karaoglu [21] Color saliency Thresholding Dilation Few tuning Simple

Curvature saliency Edges Any illumination background
Contextual priors Other applications No curved text
Linear combination Any orientation

Li [24] Thresholding SVM Graphcuts Any size Horizontal text
Gradients HOG Min/max flow Any illumination Simple background

Li [25] eMSER Graphcuts Distance Any size Horizontal text
Surrounding context Mincut/maxflow Any font Simple background

Merino [29] Hierarchical MSER Tree pruning Relative position Computation Horizontal text
tree Region filtering Edge angle times Simple background

Size Many false positives
Neumann [33] CSER Graph Pruning Any font, size Straight text

Geometric features Dynamic Exhaustive search Computation time Short strings
Thresholding programming Complex background

Shivakumara [42] RGB channels k-mean Quadtree Any orientation Contrasted text
Max-min clustering Symmetry Spatial relationships Curved text

SWT Region growing Computation time
Tomer [44] Gradient Ant colony Position Simple background

Color clustering Orientation No curved text
Partitioning

Wang [48] MRF SVM Gap Any font, size Contrasted text
Superpixel segmentation Separate component Distance Complex background No curved text
Local contrast channel Any illumination
Color
Gradient

Xu-Cheng [50] Tree pruning Adaboost Single-link Any size No curved text
MSER clustering Any font Only horizontal

Distance, size
alignment, color

Table 3 Some hybrid works proposed since 2010 (CRF: Conditional Random Field, TMMS: Toggle Mapping Morphologi-
cal Segmentation, CSH: Center-Surround Histogram, RLSA: Run Length Smoothing Algorithm, CART: Classification And
Regression Trees. LTP: Local Ternary Pattern). Tools are in bold red and features in italic blue.

Segmentation / Local Grouping Advantages Limitations
Characterization classification

H
y
b
r
id

Anthimopoulos [2] Random forest Multi-resolution RLSA Complex background Computation times
MACeLBP analysis Any size No curved text
Color Natural/artificial
Region growing text

Fabrizio [10] SVM SVM Size Computation time Horizontal text
HOG Zernick moments Distance Any size No curved text
TMMS Fourier descriptors Complex background

Polar coordinates
Gao [11] Adaboost Transfer learning Size Context adaptative Horizontal text

Texture and statistical Adaboost Color Any size Normal illumination
features (LBP, CART Occupation Many thresholds
HOG, SW, edges) SW

Niblack binarization Overlapping
Meng [28] Multi-scale contrast SVM Color Horizontal text

Color spatial distribution Heuristics SW Contrasted text
CSH, SWT Geometric features Width/height Bounded text size
CRF
Niblack binarization

Opitz [36] MSER Adaboost Color Horizontal text
LTP Height Normal illumination

Distance Simple background
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Connected component based candidates generations Texture based verification

Mask

Convex hull

CC grouping

Multi-directional

Graph with KNN

Classification & 

Recognition

Fast geometric filters 

Shape analysis

Global Validation

HOG/LBP/GLCM

Binarization

Scales/polarities

merges

Multi-Scales Pyramid 

Gray Level

Segmentation

TMMS

   For each scale Si of the pyramid

For all Si and Pj 

   For each polarity Pj of TMMS

Fig. 2 Overview of our system for text localization and extraction.

tions (diagonal, circular, etc.), contrary to most of the

recent state-of-the-art approaches. The validation step
has been improved in order to deal with heterogeneous
texts (perspective views, for example). The text spot-
ting is also much more precise (mask creation, see Fig-

ure 1 (h)), which is an originality with regards to the
state of the art. This improvement allows to detect and
extract curved text for example. Hence, we provide a

new binarization scheme (Figure 1 (g)) which is able
to merge detected texts at different scales with multi-
polarities (integration of results obtained in each color
channel). Note that we usually work on grayscale im-

ages but it is also possible to consider each color channel
separately and merge the results provided by the appli-
cation of the global chain on each of the color channel.

In the rest of the paper, we fully describe each step.

4 Segmentation

The initial segmentation is made using the Toggle Map-

ping Morphological Segmentation (TMMS) algorithm
proposed in [9]. This operator is based on the Toggle
Mapping [39], and segments a grayscale image f using

a set of two functions h1 (a morphological erosion of f)
and h2 (a morphological dilation of f).

For that, we define the function s, that corresponds
to a segmentation of f , whose value s(x) of any pixel x

is given by:

s(x) =















a if |h1(x)− h2(x)| < k

b if |h1(x)− h2(x)| ≥ k and

|h1(x)− f(x)| < p× |h2(x)− f(x)|

c otherwise

(1)

where k corresponds to a minimal contrast and p

is a percentage. The segmentation s is then computed
by comparing pixel by pixel the original image and its

morphological erosion and dilation. If h1 and h2 are too
close to each other, then s(x) gets value a. If a pixel
value f(x) is p% closer to its corresponding in h1 (ero-

sion), then s(x) gets value b. If it is (100−p)% closer to
its corresponding value in h2 (dilation), s(x) gets value

c. In practice, a small homogeneous region gets b or c

values depending on its neighborhood (see [9] for more

details). To fix the threshold k, which determines if the
region is homogeneous, we use a hysteresis thresholding
strategy (we then have two thresholds kmin and kmax).

Figure 1 (b) gives an example of the segmentation given
by the TMMS approach. This process has shown to be
efficient in natural images as well as in document im-
ages: it reached the second place among 43 methods at

DIBCO 2009 contest [12].
In practice kmin is set to 20, kmax is set to 45, and

p is set to 60. The advantage of the hysteresis strat-

egy is that the whole process is less sensitive to kmin

and kmax. In our case, we consider two polarities: the
original image and the negative one. To get the seg-

mentation of the first polarity, we apply the TMMS on
the original image by using the p value in Eq. 1. To get
the segmentation of the second polarity, we apply the
TMMS on the original image by using the (100 − p)

value. This latter result is identical to the one obtained
by computing the TMMS with the p value on the neg-
ative image, but faster.

5 Connected Components Classification

After the segmentation of the input image, we get a
collection of regions which are connected components
(CCs). This list contains a majority of non-letter re-

gions, but also letter regions. The goal of this classifi-

cation stage is to remove as many as possible the regions
that are non-letter (background area for example) from
this collection. As in a natural (and then textured) im-

age, the number of extracted CCs may be huge, this
classification must be as fast as possible. Note that
thanks to the multi-scale strategy and a polar repre-

sentation, our algorithm deals with different letter sizes

and thus becomes more general. Our classification is
divided into two main steps:

1. The first step coarsely discards non-letter regions

using fast geometric filters (see Section 5.1).
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2. The second step makes a finer analysis of the shape
of the remaining regions in order to separate letter
CCs from non-letter CCs and moreover to recognize
letters (Section 5.2).

5.1 Fast Geometric Filters

This first step consists in removing from the set of ex-

tracted CCs (see Section 4), those that do not positively
respond to a set of criteria described below.

– Size criterion. Regions with a surface smaller than
5 pixels or larger than 10000 pixels are removed.
Regions whose height or width are smaller than 2

pixels or larger than 500 pixels are also removed.
– Shape criterion. Too much twisted regions are re-

moved using a simple concavity measure given by

the maximum number of intersections of a horizon-
tal line with the contour of the CC (in our case it is
set to 5).

– Density criterion. After a dilation of the segmented
image, we count the number of regions that have
been merged. If this number is higher than 1000, we
assume that it is texture and therefore considered

as background. To be less time-consuming, we use
an horizontal 10 pixel long segment as structuring
element.

– Loneliness criterion. Isolated regions are discarded.

During this first classification step, the multi-scale
strategy is important and offers many advantages. A
pyramidal analysis permits to be independent of the
text size, even if for a specific scale we remove too small

or too large CCs. In Figure 1 (c) we give an example
of the output of this first classification step. On the
ICDAR Natural Scene image database, these filters re-

move about 80% of unnecessary regions. In the next
step, we analyse the shape of the remaining CCs.

5.2 Shape Analysis

After the first step, which removed some non-letter re-
gions from the CCs collection, the goal of the second
step is to tag the remaining CCs as letter or non-letter.

This shape analysis based classification is divided into
two main stages:

– For each CC, a descriptor is first computed based
on the wavelet transform (Section 5.2.1).

– All descriptors are classified with a k-Nearest-Neigh-
bours algorithm (Section 5.2.2).

5.2.1 Descriptor Computation

The descriptor computation follows this procedure:

1. The image is transformed into a polar representa-
tion,

2. Pixels in this polar representation are accumulated

vertically and horizontally to give two signals. These
two signals are concatenated into one vector,

3. A wavelet transform is computed on this vector.

Cartesian to Polar Transformation. Cartesian coordi-
nates do not provide a rotation invariant representa-

tion, as needed for letter recognition. We first change
the CC representation from Cartesian coordinates to
polar ones, that allows to design easily rotation invari-

ant descriptors (see Figure 3). We use an optimization

of the computation of the polar image coordinates by
taking advantage of properties of trigonometric func-
tions, inspired by the work proposed in [1] on rasteri-

zation.

Polar to Signal Transformation. Each CC is now repre-
sented in a polar space (ρ, θ). All lines and all columns
are summed up to get two vectors, each one containing

a 1-dimensional signal. Figure 3 presents the projection
of pixels in a polar representation on the two axes. The
final signal is the concatenation of these two vectors.
Note that only the vector built by summing all compo-

nents horizontally is rotation invariant. But in our case,

we do not need a fully invariant descriptor. There are
two reasons. Firstly because our training set contains

rotated samples and second, because in our tests, we
get similar performances by using fully or partially the
rotation invariant descriptors.

 

Angle θ

R
adius ρ

 

Sum on lines 

Sum on columns 

Fig. 3 From Cartesian coordinates to 1D signal. Left: the
original letter. Middle: its representation into the (ρ, θ) space.
Summation of lines (right) and columns (bottom) of polar
image.

Signal to Wavelet Descriptor. Before the classification
of vectors obtained by the previous stage, a last stage is
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required. Our signal is transformed in order to highlight
its specific properties useful for our classification issue.
We tested three different kinds of wavelets: Haar [6],
Daubechies 4 [6], Cohen-Daubechies-Feauveau 9/7 [45].

Experiences on the classification problem (letter ver-

sus non-letter) have shown that the most appropriate
wavelets in our case were Daubechies 4 (D4) ones, that

have given the highest scores. Moreover, these wavelets
are fast to compute. Indeed, Daubechies et al. [7] in-
troduced an efficient method called wavelet lifting. In-

stead of applying separately the low-pass and high-pass
filters on the input signal, wavelet lifting reduces the
number of required instructions by simplifying, factor-
izing and reordering the operations performed by the

filters. Then the input signal is not duplicated and not
resampled. It allows to compute the wavelet transform
in O(n) (where n is the size of the signal), as compared

to O(nlog(n)) in our previous chain [10]), using Fourier
transform. The small amount of operations needed for
this wavelet transform is the key point of our method’s
efficiency.

5.2.2 K-Nearest-Neighbour Classification

Our classification system tags each CC as letter or non-
letter. When our process tags a CC as letter, it simul-
taneously recognizes it.

CC Classification. We classify each descriptor provided
by previous steps. Here a descriptor is also called a sam-
ple. Two common classifiers have been considered: the
k-Nearest-Neighbors (k-NN) and Support Vector Ma-
chine (SVM). We have selected the k-NN for its speed
and because it outs performed SVM when both were
optimized for the target task. SVM was tested with

a Radial Basis Function (RBF) kernel and one of the
following strategies: 1. one-vs-one for letter/non-letter
classification, 2. one-vs-all with 36 classes for each let-

ters. The k-NN algorithm is a supervised machine learn-
ing algorithm that classifies a sample depending on the
class of its k neighbors according to a distance criterion.

Parameter k was tuned by training different KNN clas-
sifiers on the learning database, with k = 3, 5, 7, 9, 11.
By comparing them, we get correct results for 5 ≤ k ≤ 9
and choose k = 5 for speed reasons.

For our experiments, we use 32400 samples for learn-
ing and 3800 other samples for testing (all with arbi-
trary font, size and orientation). All these binary sam-

ples are mainly extracted from the Itowns1 database
but also from our dataset (a set of pictures taken or

1 http://www.itowns.fr/

collected specifically for this task containing challeng-
ing texts present in our daily life). 16200 learning sam-
ples containing characters manually labeled are split
into 36 classes (26 with uppercase letters and 10 with

lowercase letters). Letters (like “c”) similar in upper-
case and lowercase are not duplicated. Each one con-
tains 450 samples. We obtained 83% of classification

rate. 90% of the letters are correctly classified. How-
ever only 75% of the background samples are correctly
classified. It is partially due to the fact that many el-

ements look like letters. As the classification provides
false negatives, CC regions classified as non-letter are
only tagged, but not removed from the set.

In Figure 1 (d), one can observe some results of CC
classification. Regions in red are elements classified as

non-letter, and in green are elements classified as letter.
One can notice some classification errors. Indeed, some
elements in the background that look like letter have

been tagged as letter. This makes sense since each CC
is analyzed separately and no context information is
taken into account, which limits this technique. That is

why this step should then be combined with other more
global approach to obtain an accurate text localization
system. Notice that before tagging a region as letter or
non-letter, we check quickly if the region looks like a

bar. Such regions get a special tag. They can as well be
a part of the background or a letter like i or l. This tag
is specifically used to adapt some of the grouping rules.

In Figure 1 (e), one can see the letter i is tagged as a
bar.

Letter Recognition. In addition, one of the benefits of
our method is that, for CCs tagged as letter, it also
identifies the letter without any additional computa-
tional cost. However, we only get this recognition at a

specific scale, and are not able to merge these results

obtained at difference scales for the moment. These in-
formation may be useful for the grouping step. Figure 4

shows the letter recognition in superimposed orange at
a specific scale and polarity. The transcription is pro-
vided under the thumbnails.

6 Grouping

Most of the text detection algorithms integrate a group-
ing step whose goal is to fuse text regions and form text
strings. Most of the time, this grouping only uses cri-

teria that do not consider vertical, oblique or curved
text present in natural images. We have developed a
new strategy that catches various text styles based on

a graph representation and its traversal. The process is
summarized below:
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“TESCD” “CANCER R SEDKCHDK” “RACE EOR LIEE”

Fig. 4 Example of letter recognition.

– We build a graph that links each tagged CC with
its neighbors (see Section 6.1).

– Different graph traversals are used for regularity
searches. If an explored path is consistent in the
graph, all CCs it links are grouped together (see

Section 6.2).
– To get a precise region surrounding the text, a mask

is then created which cuts out the previous grouped
CCs (see Section 6.3).

6.1 Graph Creation

We use a graph whose nodes correspond to tagged CCs

(letter or non-letter), and whose edges link regions close
to each other (Euclidean distance on spatial positions).
For each tagged CC, we look for its k = 3 neighbors

among regions with similar characteristics, i.e., regions:

– with similar thickness (maximum difference: 4 pix-
els) and proportions (up to a factor of 3 for width,

height, surface and perimeter),
– close enough relatively to its size (distance up to a

factor of 3.5 of its elongation),
– that are not concentric (maximum difference of cen-

ter: 4 pixels).

Then, two regions R1 and R2 are linked together,
if and only if R1 is a k-NN of R2 and R2 is a k-NN

of R1. For the specific case of CCs tagged as bar (see
Section 5), and to allow to link small width CCs (con-
taining letters such as i, I or l for example) these con-

straints are relaxed. Then, we get a graph of adjacency
of the CCs (see Figure 1 (e)).

6.2 Graph Traversal

We assume that texts in natural images have some reg-
ularity properties, and consider 3-characters minimum
size chains to reduce the number of false positives. We

then perform a graph traversal to find these regulari-

ties, i.e., consecutive connections that have similar di-
rections (difference in [−π

5 ,+
π

5 ] ) and sizes (difference in

[− 2
3 ,+

2
3 ]). Theses two constraints are checked only for

consecutive regions in a graph path. In fact, in a single
text string, letters may have different orientations due

to the perspective view or text style, thus consecutive
letters properties slightly differ. Our strategy allows to
handle any orientation of text, even curved text. Thus,
when a consistent path is found, all the CCs it links

(also called pattern) are considered. If a majority of
them are tagged as letter, the whole pattern becomes a
text area candidate. Indeed, as some tags can be erro-

neous, we allow CC tagged as non-letter to be part of
the text area candidates. When the number of candi-
dates becomes too large, the graph traversal algorithm

can lead to a combinatorial explosion. To avoid this,
we limit the length of detected texts to 6 letters maxi-
mum. We then get a collection of small text areas which
are merged into a text string if they overlap and have

a similar direction (scalar product between principal
components).

During the grouping process, we also discard some
false positives using letter recognition. We discard text

candidates that contain a series of the identical letters,
corresponding to a periodic feature in the image.

6.3 Mask Creation

Most of the time, output of a text localization algorithm
is a bounding box surrounding the detected text. This

makes sense because most of the methods assume that
the text is horizontal. On the contrary, we provide a
precise location of the text in the image. It corresponds

to a mask having the same size as the input image,
in which white pixel areas are candidate text regions,
and black ones are non-text area. We can not simply
bind candidate text regions by rectangles because, in

the cases of slanted text or text following a curve, a
lot of pixels of the background would be included in
the bounding boxes. To create this mask, the union of

the convex hulls of all pairs of successive letters in the
candidate text area is computed. This gives the exact
boundary of the text within the image. Figure 5 illus-

trates the principle of the mask creation, in the case of
curved text.
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(a) (b) (c)

Fig. 5 (a) Input image; (b) Creation of the convex hulls; (c) Image restricted by the obtained mask.

7 Validation

The previous step provides a collection of successive
CCs that form candidate text areas. Some of them can
however be false positives. Since it is very hard to im-

pose constraints on text areas (orientation, font, size,

etc.) in natural images, objects with strong edges (win-
dow, tree branch, fence, etc.) can be easily classified as

text and therefore decrease the localization’s precision
rate. A validation step is then added after the localiza-
tion (Figure 1 (f)) to confirm or refute that the text
area candidates really correspond to text. It is actu-

ally an additional classification step that differs from
the previous local one, since it is global for each set of
CCs. This validation stage is based on texture analysis

with classical texture descriptors (Section 7.1) and the
classification is performed by a SVM (Section 7.2).

7.1 Feature Extraction

Each potential text region area is normalized to a fixed

size square using a bilinear interpolation. Our exper-
iments have shown that a 64 × 64-pixel resolution is
suitable for our problem. Since the localization pro-
cess is based on CCs, we choose to validate the text

candidates using an orthogonal approach, i.e., we con-
sider texture-based information. In our case, we extract
and combine three kinds of texture features: the Gray

Level Co-occurence Matrix and Haralick features, the
Histogram of Oriented Gradient and Local Binary Pat-
terns.

7.1.1 Gray Level Co-occurence Matrix and Haralick

Features

The Gray Level Co-occurrence Matrix (GLCM) and
Haralick’s texture features [14] are used due to their
ability to capture both information about the distri-

bution of intensities and their relative spatial position.
We compute four GLCMs on directions 0◦, 45◦, 90◦,

and 135◦. Next, six Haralick features (contrast, homo-
geneity, correlation, energy, dissimilarity and entropy)
are computed for each one of the GLCM, leading to a

24-size feature vector.

7.1.2 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) have been used
for object detection tasks, such as person detection [5]

or text detection [30]. This descriptor can successfully
capture gradient orientation distributions of text con-
tours. Here, we extract the HOG in the image restricted
to the mask described in Section 6.3. It contains 33 bins:

32 bins which capture the different gradient orienta-

tions, and 1 bin dedicated to homogeneous zones (i.e.
with small gradient magnitudes). Each HOG is normal-

ized with respect to the number of pixels in the mask,
in order to achieve a scale invariant feature.

7.1.3 Local Binary Patterns

Local Binary Patterns (LBP) [34] are texture descrip-
tors introduced for measuring the local contrast for ef-

ficient texture classification. They are translation and
illumination change invariant and therefore suitable for
text extraction. Moreover, they are less time-consuming

than other texture descriptors. The principle is to asso-
ciate each pixel of the image with a code that can have
28 = 256 possible values. For that, each pixel value

(called “center pixel value”) of the original image is
compared to the one of its 8 neighbors in a clockwise
order: a neighbor gets label 1 if its value is higher, oth-
erwise 0. By reading binary labels in a clockwise order

(from the north pixel to the north west one), we get
a binary 8-value code, whose decimal values belong to
[0, . . . , 255], also called texture pattern code. A texture

pattern code is uniform if it contains a maximum of two
bitwise transitions from 0 to 1 or 1 to 0. The LBP uni-
form pattern code histogram is computed, in order to

get the LBP feature that contains the 60 most frequent

uniform pattern codes and their frequency, leading to
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a 120-size vector. In our approach, we use the Edge-
LBP [51], a noise invariant version of the traditional
LBP. The difference comes from the comparison used
to differentiate the center pixel from its neighbors (LBP

threshold is fixed to 1). In our experiments, we set it to
5, since it was a good compromise for a larger variety
of letter objects.

7.2 Support Vector Machine (SVM)

SVMs are easy to learn classifiers with high generaliza-
tion ability. For our validation process we used a non
linear SVM, based on RBF kernel [17]. The learning

process was carried out on 8628 sample images: 4314

positive examples and 4314 negative examples with their
respective mask. All images are text candidates ex-
tracted by our detector from Itowns database. Samples

are manually labeled and their content varies in size,
orientation, font, etc. A 177-size feature vector was ob-
tained by concatenating the three features, described in

the previous sections. To avoid any orientation depen-

dency, images containing text with arbitrary font size
and direction were furthermore rotated in 4 different
directions (0◦, 45◦, 90◦, and 135◦) during the training

process.

To evaluate the efficiency of the validation, we run

twice our text detection on the ICDAR 2013 Robust
Reading Competition testing database [22] - one ex-
cluding the validation and the other one including the
validation. Theses experiments show that the activation

of the validation step successfully decreases the number
of false positives. It removes more than 82% of false pos-
itives while removing only less than 4% of true positives.

We noticed that the GLCM with Haralick features out-
performs the two others texture features. The HOG and
LBP do not improve results so much but refine them
by better managing some specific cases (especially some

periodical patterns) that are not well handled by Haral-
ick features. Figure 1 (f) shows an example of an invalid
and a valid text area with our classification process.

8 Multi-scale Binarization

The previous steps have yielded a set of masks corre-
sponding to precise localizations of the text. There is
one mask for each scale (depending of the image size)

and for each polarity. However, a same text region may
have been detected at different scales or/and two differ-
ent polarities. The main goal of the binarization step is
to merge all these detections to provide a binarization

of each letter at the scale one.

Two problems can arise to perform this binarization.

First, we need to upscale binarization for detections at a

lower scale, which does not provide a satisfactory visual
result. Secondly, if the same text is detected at different
scales, the upscaling of its binarization at the lower scale

degrades its binarization at the higher scale.

This is not an easy task nevertheless, a multi-scale
detection is very important. By analyzing separately
each range of region size, we can consider any size of
text. Moreover, if a letter is split (dot text or textured
text for example), the analysis at the higher scales fails
to detect this letter. At a lower scale, the texture is
simplified or all parts of the letters are merged, which

enables to detect the text. Note that, because only a
subset of regions are proceeded at each scale, the whole
processing time is not so much increased.

In order to get correct boundaries of letters, we se-
quentially consider scales from the higher to the lower.

At scale one (higher scale), the boundaries of letters
are correct and the localization process precisely indi-
cates which regions are letters and which are not. At

this scale, we simply keep regions that have been se-
lected by the detection process. For the lower scales,
we upscale the binarization of detected letters to the

highest scale. This gives a coarse result that is used to
determine which regions are letters in the image seg-
mentation at scale one. Every pixels of the binarized
regions are projected onto the segmentation of the im-

age at scale one. Each pixel of the binarized region vote

for the region in which it is included in the segmenta-
tion of the image at scale one (if they have a comparable

color). All regions that are covered by voting pixels are
kept. If the process succeeds, the result is visually much
better (Figure 1 (g)).

However, this process may fail: a letter at a lower
scale might not correspond to one region or to a whole

set of regions at scale one (mainly because the segmen-
tation at scale one may have failed). In this case, and
if the same region has not already been binarized at a

higher scale, we keep the upscaled binarization of the
letter at scale one, which gives a less accurate result.

Selecting corresponding regions in the segmentation
at the scale one instead of upscaling its binarization
from lower scale visually improves results. Going from

the higher scale to the lower one allows to keep the more
precise result for texts detected on different scales (as
it is supposed to be better at higher scale).

The power of our binarization approach is that it
allows to merge results from different scales and polari-

ties (and even color channels if we want to process each
color channel independently). We do not only binarize
the detected text regions but take also into account

the knowledge of the whole detection process. Then,
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Fig. 6 Example of binarization in upscale and textured
cases.

textured text detected at lower scales can also be bi-
narized and textured background will not disrupt the

binarization (see some examples in Figure 6).

9 Results and Evaluation

We have presented TextCatcher, a method for Latin

text detection in images. Its main advantage is that it
does not make any assumption on the text style. In
this section, we evaluate and compare it with other re-
cent approaches. We first present some qualitative and

quantitative results on common datasets of the ICDAR
2013 competition [22]. Next, we compare it with a more
challenging set to show its robustness. We also discuss

the role of parameters in our algorithm.

9.1 Qualitative Results

Figures 7 and 8 give examples of detection and bina-

rization results. They shows the bounding boxes of the
detected text results, the outline of the mask, the ex-
tracted text, and the multi-scale binarization results.
Despite the difficulty and the variability of texts present

in these images, our algorithm has succeeded in ex-
tracting all of them. Indeed, one can see that it can
efficiently handle curved, textured and multicolor text,

text in perspective, cluttered background, degraded or
partially occluded text.

9.2 Evaluation on the ICDAR 2013 Dataset

We evaluated our text localization system on two bench-
marks of database used during the ICDAR 2013 Robust
Reading Competition [22].

The first benchmark (challenge 1) contains 141 sam-

ples of born digital images for a total of 1696 Ground
Truth (GT) text regions. The image size ranges from
194× 30 to 660× 476 pixels. Although such images are
not the main target of our detector, we wanted to evalu-

ate its efficiency on different kinds of images in order to
demonstrate its generic properties. The second bench-
mark (challenge 2) contains 233 natural scene images

and a total of 1092 GT text regions. The image size

ranges from 350× 200 to 3888× 2592 pixels.

The evaluation protocol used for ICDAR 2013 is
based on the Wolf and Jolion method [49]. It uses the

recall R, precision P and F -score to evaluate the detec-
tion results with respect to the GT.

However, this evaluation protocol does not always
represent the real behavior of the analyzed method.
For example, our tests provided a recall and precision

around 25% for the challenge 1 and 50% for the chal-
lenge 2. However, our method detects more than 25%
(respectively 50%) of the text2. The problem lies in the

used matching strategy. Because the GT annotations of
the ICDAR 2013 benchmark are at a word-level, they
frequently penalize under and over detections. Since

our text localization algorithm provides text detections
at line-level, both the recall and the precision evalu-
ated with the ICDAR protocol strongly decrease. When
dealing with horizontal text, only one word of the line is

most of the time validated as detected, while all others
are considered as missed. Moreover, in cases of inclined
text lines, no word is validated and the text line is con-

sidered as a false positive. Figure 9 shows a detection
at line level in green and the GT in red at word level.
As it can be seen, although all the text is correctly de-
tected, the detector gets a low recall, R = 0.5. It is then

impossible to fairly evaluate our method and compare
it with other algorithms, because the methods provid-
ing the detections at word level are less penalized (first

ones in the ranking of the ICDAR challenge). In order
to compare our scores with other methods, we split all
the bounding boxes of detections according to the an-

notation granularity of the GT. The analysis of the GT
gives the positions where the detections need to be split
so that they match the GT granularity. This choice is
justified later.

Challenge 1: Born-Digital Images. Results of TextCatcher
and those of all participants during the ICDAR 2013

2 The scores of participating are freely available [22]
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Fig. 7 Text localization and extraction results obtained with our TextCatcher approach on our images.
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Fig. 8 Text localization and extraction results obtained with our TextCatcher approach on ICDAR images.

Fig. 9 Line-level detection penalization with the ICDAR
2013 evaluation method: 4 GT objects (red) are matched
against 2 detections (green) leading to R = 0.5 and P = 1.

Method R P F

USTB TexStar [22] 86.14 89.60 87.84
Text Detection [10] 83.60 85.68 84.63
TH-TextLoc [22] 81.13 82.93 82.02
I2R NUS FAR [22] 79.80 83.80 81.75
TextCatcher 74.50 89.16 81.18
I2R NUS [22] 74.79 84.21 79.22
Baseline [22] 72.00 83.98 77.53
BDTD CASIA [22] 69.93 79.61 74.46
OTCYMIST [22] 80.33 69.14 74.32
Inkam [22] 61.30 66.23 63.67

Table 4 TextCatcher and all participant results on the IC-
DAR 2013 competition - Challenge 1 (Born-Digital image).

robust reading competition - challenge 1 are given in
Table 4. Even if our detector was not designed for this

kind of images, it still provides competitive scores. No-
tice that our method is designed to be generic, and we
make very few assumptions. However we get a preci-
sion score comparable to the one of the method ranked

first and outperform all other methods that make much

more hypothesis on text. The average processing times
are 3.2 sec (standard deviation over the dataset σ = 3.4

sec, ranging from 0.04 sec to 19 sec, depending on the
image).

Challenge 2: Scene Images. Results of TextCatcher and
all participants of the ICDAR 2013 robust reading com-

petition - challenge 2 are given in Table 5. On one
hand, one can see that our detector gives the high-
est recall score (75.6%). This is due to the fact that

our method is designed to detect text using fewer hy-
potheses than other ones. On the other hand, it also
explains why our approach does not get the highest

precision rate: as it is designed to detect text in any di-
rection, color, etc., it provides more false positives than
common methods. Hence, our method reaches the sec-
ond place among all participants. The average process-

ing time is 6 secs (standard deviation over the dataset
σ = 9.5 secs from 0.5 sec to 1.5 min, depending on
the image). The computation time depends of course

on the size of the image, but mainly on the number of
CCs in the image and also on the number of text can-
didates to process. 4% of the time is spent on TMMS,
10% on fast filters, 20% to separate text regions from

non text regions, 10% for the grouping process and
30% on the validation step. The remaining computation
time is spent on the multi-scale pyramid generation,

on the multi-scale fusion (10% for binarization) and
on some inputs/outputs. These computing times have
been measured using a mono-threaded C++ implemen-

tation of the process using the Milena library [35], on a
Intel➤ Core➋ i5-3450 CPU (3.10GHz).

Stability of the method. Despiteur method is designed
to be generic and is not optimized for a specific dataset,

TextCatcher got competitive results. Furthermore, it
is noticeable that TextCatcher the F-score values on
Challenge-1 and Challenge-2 are very close (a differ-

ence of only 5). This is the smallest difference obtained
among all participants (USTB texStar 78.28-87.84, Text detection
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Method R P F

USTB TexStar [22] 70.78 87.56 78.28
TextCatcher 75.60 75.49 75.54
Text detector CASIA [41,40] 68.35 82.75 74.86
I2R NUS FAR [22] 71.51 74.97 73.20
Text Detection [10] 67.18 78.02 72.19
I2R NUS [22] 70.54 73.29 71.89
TH-TextLoc [22] 72.33 69.56 70.92
CASIA NLPR [57,4] 69.55 72.17 70.84
TextSpotter [32,33] 65.97 73.83 69.68
Baseline [22] 35.27 57.66 43.77
Inkam [22] 46.78 41.01 43.71

Table 5 TextCatcher and all participant results on ICDAR
2013 competition - Challenge 2 (Scene Images).

72.19-84.63, I2R NUS 71.89-79.22, TH TextLoc 70.92-

82.02, Inkam 43.71-63.67).

A note on the evaluation protocol. The evaluation pro-

tocol is still a problem in text detection. Indeed, no
existing method can correctly handle the difference of
granularity between GT annotations and detection re-
sults. In many cases, this leads to unrepresentative eval-

uations. In our case, the granularity of our text detec-
tor differs from the one used in ICDAR competition.
To overcome this issue, there are two solutions:

– The first one is to design another evaluation pro-
tocol that can handle any type of granularity and
therefore is very complex. Moreover one could argue

this evaluation protocol is chosen to maximize our
scores.

– The second one is to adapt the output of our text de-
tector to the granularity of the GT. The main idea is

to add an automatic splitting step at the end of the
framework in order to divide results from sentences
to words. This strategy is very complex to develop in

particular when considering multi directional texts
like in our approach and have drawbacks. Even if
this splitting step can increase the F-scores, it can

degrade the overall quality of the detection results.
Indeed, it will help to evaluate properly results (by
allowing the matching between detections and GT)
but it may introduces mistakes (like dividing a word

for example). The major issue is that we evaluate

text detection and splitting stages both together
and not only the former. Indeed, any failure in the

splitting process will be assigned to the detection
algorithm. Adding an automatic splitting step leads
to unfair comparisons between text detection meth-
ods because we want to evaluate only the detection

part.

In this paper, we propose a solution in between: we

integrate the splitting into the evaluation protocol. For
that, we split detection boxes according to the ground

truth. Such a choice might be surprising but is relevant

for the following reasons.

– The evaluation of a detector is more representative,

regardless the granularity of its output (word or sen-
tence level).

– This ideal splitting allows the evaluation only fo-

cussing on the detection task.
– Because the splitting is not manual, results are un-

biased (not subjective choices).

– The same splitting step is applied to every partici-
pants and then comparisons are fully consistent.

The main drawback of this solution is that in some
situations, it can over-estimate the recall. For example,
if the text detector fails and provides the whole image

as a text zone, this will give the best recall score. In
practice, however, we did not encounter this situation
in our evaluations. Even if this automatic splitting is
probably not the best solution (the best one is to have

an evaluation protocol that can handle any granular-
ity), we do think it gives a relevant comparison between
our method and the other ones.

9.3 Evaluation on our challenging Dataset

The ICDAR dataset is mostly restricted to horizon-
tal text, which makes it unsuitable for evaluating al-
gorithms, like ours, that are designed to detect text

in harder situations, such as daily life scenes. To show
the real capacities of our method, we have constituted a
new dataset of 51 images (Figure 7) with 227 texts (and

their GT) from indoor or outdoor contexts3. Texts are
more challenging (textured, multi-color, cluttered back-
grounds, curved, etc.). Below, we give the percentage of
each text type present in our dataset (at line level). It

is a “coarse” estimation because its is subjective and

underestimated when multiple deformation occurs si-
multaneously.

– 20% of curved text (included 10% of text strictly
circular),

– 12% of tilted text (2% with an high slop),

– 6.5% of vertical text,
– 2% of strings containing letters of different colors,
– 8.5% of strings containing scattered letters,
– 13% of blurred or degraded or textured text.

We compare our detection scores with those obtained
by two other efficient detectors for which the codes
are available online: the approach in [36]4 that we call

3 Thumbnails are available at https://www.lrde.epita.

fr/~myriam/images_ijdar2015.zip. If the article is accepted
the database and the GT will be available online.
4 https://github.com/mop/LTPTextDetector
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Method R P F

TextCatcher 0.53 0.33 0.40
LTPTextDetector 0.30 0.32 0.30
OpenCV detection 0.18 0.28 0.22

Table 6 Results of TextCatcher and two other detectors on
our dataset.

“LTPTextDetector” and the implementation by Gomez
as a part of the work of Neumann and Matas algo-
rithm [32]5 included in the OpenCV library, that we

call “OpenCV detection”.
We used Wolf metric [49] with the DetEval tool (de-

fault parameters). We encountered some difficulties in
annotating the dataset because the bounding boxes are

not well adapted for inclined or circular text. Although
the annotations do not always have the same granular-
ity (depending on each situation), all three tested im-

plementations provide detections with the same granu-
larity (line level, however LTPTextDetector splits into
words), being most of the time equally penalized.

The results of all methods are given in Table 6.
While Neumann and Matas’s method [32] has difficul-
ties to detect text in such situations, the implemen-
tation of LTPTextDetector gets good results but fails

whenever text is not horizontal. The difference in the
efficiency of this method and TextCatcher is due to the
fact that TextCatcher is able to detect this kind of text.

9.4 Discussion on Parameters

Our method relies on a set of parameters. Some of them
are also simple to fix and are common to any kind of

images. Those for the segmentation step are relatively
easy to set up thanks to the hysteresis approach. All pa-
rameters for the fast filters and grouping are also fixed,

whatever the image size is, thanks to the multi-scale
approach. The choice of most of these values is then in-
dependent on the image size, or on the size of the text

we want to detect in them: a text that will be discarded
at a scale will be selected at another scale. Although it
is possible to adapt these parameter values to a specific
known context, in practice this is not necessary when

working on a new set of images. In our tests, we always

used the same values for all these parameters, whatever
the databases. We summarize all required parameters

that have been described in the previous sections as
well as their range of values in Table 7. Note that all
the parameter values have been chosen by testing on a

large variety of pictures. In this table we also present

5 https://github.com/Itseez/opencv_contrib/blob/

master/modules/text/samples/end_to_end_recognition.

cpp

the sensitivity of the method against each parameter.
For that, we have tested our method on ICDAR Ro-
bust Reading Competition dataset (challenge 2 testing
dataset). For each parameter assigned a value v, we

have tested the algorithm again, once by substituting
value v by v−10%v and second by substituting value v
by v+10%v. We then have measured the impact of the

F-score of these substitutions. The mention Low indi-
cates a variation lower than 10−2/in the order of 10−3

while the mention Medium indicates a variation around

10−2. These indications show that, even if the method
relies on multiple parameters, the impact of these pa-
rameters is very limited.

All these tests show that our method is very effi-
cient, even if we are not ranked first in the ICDAR
dataset. If we evaluate our method on datasets contain-

ing more general image styles, it reaches the first place.
With a non optimized and a mono-threaded algorithm,
the computation time is reasonable but depends on the

size of the image, the number of CCs in the image and

the number of text candidates.

10 Conclusion

In this paper, we have proposed an accurate and ef-
ficient processing chain to detect and extract text in
an arbitrary context (e.g. in natural textured scenes).

We have tested and compared our method using differ-
ent datasets and proved that it is competitive to the
state-of-the-art methods. Our algorithm has many ad-
vantages.

First, our approach is universal because we make
only few hypotheses about the text nature (Latin alpha-

bet, block letters). Even if there are some parameters,
they do not require to be tuned on a dataset. Moreover,
it is versatile because the algorithm is decomposed into

modular steps. It is easy to add/remove a component
for a specific context: for example, during the group-
ing step, we easily only consider horizontal or vertical

texts. It differs from many other existing chains, that
are dedicated to target applications and consequently
are more difficult to generalize.

Secondly, we introduce a classification of connected
components using a new descriptor based on the wavelet
transform. This descriptor allows both to classify candi-

dates as “text” or “non-text”, but also, in case of text,

to recognize its letters without any additional compu-
tational cost.

Third, the grouping step based on a graph allows
to localize texts in every direction and even curved

text. Usually, a localization algorithm provides bound-
ing boxes containing detected text. This is correct for
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Table 7 Overview of the parameters used in our framework for segmentation (S), fast filters (F), classification (C) and
grouping (G) steps. For each one, we report its role in the framework, its value or range of values and its sensitivity (impact
on performances).

Name Role Value(s) Sensitivity

S

kmin Lower hysteresis threshold = 20 Low
kmax Higher hysteresis threshold = 45 Low
p Proximity percentage to erosion = 60 Low

F

S Surface of regions ∈ [5, 10000] pixels Low
h, w Height and width of regions ∈ [2, 500] pixels Low
Ninter Number of intersections with the horizontal ∈ [1, 5] Medium
Nmerged Number of regions merged ∈ [2, 1000] Low

C

k Number of nearest neighbors = 5
σ Size of wavelet descriptors = 32

G

tbetween Inter region thickness proportion ∈]0, 4] pixels Low
pbetween Inter region proportion ∈]0, 3] pixels Low
dbetween Inter region distance ∈ [4, 3w] pixels Medium
θbetween Variation of orientation ∈ [−π

5
,+π

5
] Medium

sbetween Variation of size proportion ∈ [−2

3
,+2

3
] Low

horizontal or vertical texts but is too coarse for inclined

and curved texts (the non-text area in the bounding
box is usually larger than the text area). That is why
our method provides a mask which contains text strings

whose boundaries have been cut out. It provides a more
precise localization of the text.

Finally, our multi-scale processing chain allows to
detect various text sizes. The combination of detected

text at each scale is done by a new binarization process.
The main limitation of our method is that it can

also provide false positives since it assumes very few hy-

potheses. We are currently improving the letter recog-
nition system given by our classification procedure to
identify periodical patterns (more than simply detect-

ing repetition of same letters) and not consider them as
text candidates. Another problem occurs when letters
are stuck together: in such a case, the segmentation can
not separate them and this can disrupt the rest of the

chain. We would expect to overcome this drawback by
adding a splitting process. Although the average com-
putation time is correct, we plan to improve them in

case of many of CCs to treat.
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