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Abstract The perspective-N-point problem is a well known issue in computer vision. It
consists in the determination of the distance between the camera and a set of
points well known in an object coordinate space. This problem has been ex-
tensively treated in the literature and is still opened. Many solutions already
exist. All these approaches consider only common planar camera. We propose,
with a new formulation, to extend this problem to non linear imaging sensors:
catadioptric panoramic sensors. The proposed approach permits to get a strictly
analytical solution to the perspective-N-point problem usable with this kind of
sensors.
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1. Introduction

Catadioptric sensors are a combination of a mirror and a video camera. A
special and very interesting configuration is the one that uses a revolution pro-
file mirror as it provides 360 field of view at a classical video frame rate (fi-
gure 1).

This topic is relatively new and most well mastered problems in planar ca-
meras have to be extended for catadioptric sensors. The Perspective-N-point
problem also called P-N-P (estimating the distance between the sensor and a
set of N well known points) is one of these issues: many people have worked
on it but it has never been used with catadioptric sensors. Multiple formu-
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Figure 1. A panoramic catadioptric sensor from vstone (Vstone-Corporation, ): a small ca-
mera is in front of a revolution profile mirror.

lations exist. The most popular is certainly the one exposed by Fischler and
Bolles (Fischler and Bolles, 1981). The distance between the sensor and points
is evaluated by the use of the cosines law in the perspective polyhedron. Li-
nearization of this formulation is proposed by Quand and Lan in (Quan and
Lan, 1999) and Ameller et al. in (Ameller et al., 2002). Haralick in (Hara-
lick et al., 1991) reviews previous approach. Another formulation is the one
presented by Horaud et al. (Horaud et al., 1989). They give an analytical solu-
tion to the perspective-4-point problem. Abidi and Chandra propose in (Abidi
and Chandra, 1995) a solution for the P4P problem on a sensor that include a
zoom control. A good overview of the PNP problem is given by Carceroni and
Brown (Carceroni and Brown, 1997). They sum up most existing solutions.
Perspective-N-point problem has been also treated under simplified model of
camera like in (Alter, 1994): Alter gives a solution for the P3P problem under
weak perspective.
All these formulations need a center of projection. Some catadioptric sensor
have an optical center but not all of them. We need to find a new formulation if
we want to be more general. We present a new method to solve the perspective-
N-point problem and explain how to get an analytical solution. This method
is used with catadioptric sensor and works, not only with sensors that respect
the single viewpoint constraint, but with other kind of mirrors (and works also
with planar cameras). The solution you get can be, in some cases complicated
but, as the obtained solution is strictly analytical, the computational time is
very low and constant which is well adapted for real time application. The
accuracy is hard to quantify analytically as it depends on too many parameters
like the resolution of the video camera, the size and the shape of the mirror, the
precision of the localization of points in the image...
This paper is organized as followed: the first part explains the method, then an
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Figure 2. Projection of points pi onto the mirror and onto the image.

example is given to illustrate the method. The second part shows how expres-
sions are simplified if the sensor respects the single viewpoint constraint and
the previous example is reviewed. Then comes the conclusion.

2. Solution of the P-N-P

The P-N-P is the problem of estimating the distance between the sensor and
a well known set of points. Our sensor is supposed to be calibrated (Fabrizio
et al., 2002) (Intrinsics parameters of the camera are known and relative place-
ment of the mirror in respect to the camera is known too). As the transforma-
tion between the mirror coordinate space and the camera coordinate space is
well known, we can then use indifferently one or the other. In our case, we will
try to express the location of points in space in the mirror coordinate space.

Expression of the solution

Note pi (i = 1..N ) points in space, p′i projection of points pi on the mirror
and p′′i projection of points p′i on the image plan. Note F the center of the
camera (figure 2). The issue is, given N points p′′i , find the location of points
pi in space.

With points p′′i , we can find points p′i. Points p′i are the intersection of line
(Fp′′i ) and the mirror. We can express the location of points pi in space:

pi = p′i + λi �vi (1)

Note:
λi > 0 (2)
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Figure 3. An example with 4 points.

with �vi directing vector of line (p′ipi). The line (p′ip′′i ) is the reflection of the

line (p′ipi), their directing vector are then linked: if we note �v′i the directing
vector of line (p′ip′′i ) and �Ni the normal of the mirror in point p′i, we can write:

�vi = �v′i − 2 �Ni( �Ni . �v′i) (3)

Note that all directing vectors are assumed to be unit.
To locate the N points pi in space you have to find all λi, you have to find a
system of equation with all λi and solve it. Note

−−→pipj = pj − pi (4)

= p′j + λj �vj − (p′i + λi�vi) (5)

You can find the relation that expresses constraints on vector−−→pipj . Solving
the obtained system will give you analytical expression of all λi. Many con-
straints can be used like the length of vectors (||−−→pipj|| = Lij) . The sim-
plest way to obtain systematically a solution is to express linear combination
(cj

−−→pipj + ck
−−→pipk = −−→pipl), and to solve the system to express all λ relatively

to one of them. By the use of an additional equation (||pipj|| = Lij for ex-
ample), you can find the expression of the last λ. Note that, as points are well
known in the object coordinate space, coefficients c and Lij are known, the
only unknown factors are the λ... The complexity of the solution depends on
expressions you choose. Once you get an expression for all λ, you get the
distance between points in space and the center of the mirror then, you can
estimate the transformation between the sensor coordinate space and the ob-
ject coordinate space. This method allow you to get an analytical solution for
N > 3 if the points are coplanar and for N > 4 otherwise and for N = 3 if
the points are aligned.
Let us see on a simple example how to do.

Example

Suppose you have 4 points (p1, p2, p3, p4) coplanar in space and they form
a parallelogram (figure 3). Their projection onto the mirror are noted p′1, p′2, p′3
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and p′4 respectively and their projection on the image plan are noted p′′1, p′′2 , p′′3
and p′′4 respectively. We can compute �vi as explained before and then compute
vectors −−→p1p2 and −−→p3p4. As points are forming a parallelogram in space we can
write: −−→p1p2 + −−→p3p4 = 0 (6)

this gives us the system:



p′x2 + λ2vx2 − (p′x1 + λ1vx1)
+p′x4 + λ4vx4 − (p′x3 + λ3vx3)

p′y2 + λ2vy2 − (p′y1 + λ1vy1)
+p′y4 + λ4vy4 − (p′y3 + λ3vy3)

p′z2 + λ2vz2 − (p′z1 + λ1vz1)
+p′z4 + λ4vz4 − (p′z3 + λ3vz3)




=




0
0
0


 (7)

rewritten differently:



λ2vx2 − λ3vx3 + λ4vx4

λ2vy2 − λ3vy3 + λ4vy4

λ2vz2 − λ3vz3 + λ4vz4


 =




λ1vx1

λ1vy1

λ1vz1


 +




vx0

vy0

vz0


 (8)

with
v0 = p′1 − p′2 + p′3 − p′4 (9)

if we pose:

∆ijk =

∣∣∣∣∣∣
vxi vxj vxk

vyi vyj vyk

vzi vzj vzk

∣∣∣∣∣∣
(10)

the solution of the system (8) is

λ2 = (∆340 + ∆134λ1)/∆234 (11)

λ3 = (∆240 + ∆124λ1)/∆234 (12)

λ4 = (∆230 + ∆123λ1)/∆234 (13)

We have an expression of all λi relatively one of them. All expressions are
divided by ∆234. ∆234 is never equal to zero because vector �vi are not collinear.
There is no degenerated solution.
We have to find an expression of the last λ. If we pose L14 the length of the
segment [p1p4], we can write:

‖−−→p1p4‖ = L14 (14)

⇔ ‖p′4 + λ4 �v4 − (p′1 + λ1 �v1)‖ = L14 (15)

⇔ λ2
1 − 2λ1λ4 �v1 �v4 + 2(p′1 − p′4)(λ1 �v1 − λ4 �v4)

+λ2
4 + p′21 + p′24 − 2p′1p

′
4 = L2

14 (16)

(with ‖−→vi ‖ = 1 and L14 > 0)
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Combined with the expression of λ4 (Eq. 13), we get:

λ2
1A + λ1B + C = 0 with λ1 > 0 (17)

and

A = 1 + (∆123/∆234)2 − 2(∆123/∆234)−→v1
−→v4 (18)

B = 2∆230∆123/∆2
234 + 2(p′1 − p′4)(−→v1 − ∆123/∆234

−→v4) −
2∆230/∆234

−→v1
−→v4 (19)

C = −2(p′1 − p′4)∆230/∆234
−→v4

+(p′1 − p′4)
2 + (∆230/∆234)2 − l2 = 0 (20)

This polynomial expression (Eq. (17)) can be easily solved and give an expres-
sion of λ1. This solution, combined with Eqs. (11) to (13), gives the expression
of all λi. Note that Eq. (17) has two solutions but the correct one is the positive
one.
We have explained how to get an analytical solution of the P-N-P, then we have
given an example of simple solution with N = 4 and shape constrained. This
constraint was added to simplify the expression of the solution and to make
it shorter. If you want to get the general solution (without any constraints on
shape), you just have to change equation (6) by

K1
−−→p1p2 + K2

−−→p1p4 −−−→p1p3 = 0 (21)

Now let us see simplifications that bring the single viewpoint constraint.

3. Simplification of the solution with the single viewpoint
constraint.

The single viewpoint constraint ensures the presence and the uniqueness of
the optical center of the mirror (Baker and Nayar, 1999). The computation
of reflection on the mirror is simplified and particularly we are not obliged to
compute the normal of the mirror to compute the reflection (figure 4). If we
note F ′ the optical center of the mirror, the Eq. (1) can be rewritten:

pi = F ′ + λi
�vi (22)

with
�vi = (p′i − F ′)/(||p′i − F ′||) (23)

Note that points p′i are always known as they are at the intersection of line
(Fp′′i ) and the mirror. Expression of vectors−−→pipj (Eq. (5)) is then simplified:

−−→pipj = F ′ + λj
�vj − (F ′ + λi

�vi) (24)

= λj �vj − λi�vi (25)
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Figure 4. Projection of points pi according to the optical center of the mirror.

If the preceding example with the parallelogram p1p2p3p4 is taken again, sys-
tem (8) becomes:




λ2vx2 + λ4vx4 − λ3vx3

λ2vy2 + λ4vy4 − λ3vy3

λ2vz2 + λ4vz4 − λ3vz3


 =




λ1vx1

λ1vy1

λ1vz1


 (26)

the solution of this system is then:

λ2 = (∆134/∆234) λ1, (27)

λ3 = (∆124/∆234) λ1, (28)

λ4 = (∆123/∆234) λ1 (29)

In the same way, Eq. (14) becomes:

‖−−→p1p4‖ = L14

⇔ ‖λ4
−→v4 − λ1

−→v1‖ = L14 (30)

⇔ λ2
4 − 2−→v1

−→v4λ1λ4 + λ2
1 = L2

14 (31)

(because ‖−→vi ‖ = 1 and L14 > 0)

combined with new solution (29) we get:

λ2
1 = L2

14/δ (32)

δ = 1 − 2−→v1
−→v4∆123/∆234 + ∆2

123/∆
2
234 (33)

If we introduce this solution in Eqs. (27)-(29), we get a solution for each λ:

λ1 = L14/
√

δ, (34)
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λ2 = (∆134 L14)/(∆234

√
δ), (35)

λ3 = (∆124)/(∆123) (L14)/(
√

δ), (36)

λ4 = (∆234)/(∆234) (L14)/(
√

δ) (37)

The solution is then drastically simplified. (Note that this solution also works
with planar camera).

4. Conclusion

We have presented a new way to solve the perspective-N-point problem. The
solution is strictly analytical and works well with every kind of catadioptric
panoramic sensors (but is not restricted to them). Expressions of solutions are
simplified when the sensor respects the single viewpoint constraint. The choice
of the geometrical form of points pi makes it possible to get a simple solution.
This solution has a constant execution time. The solution can be used directly
or can be used to initialize a minimisation process.
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